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ABSTRACT

During software evolution, information about changes be-
tween different versions of a program is useful for a number of
software engineering tasks. For example, in regression test-
ing, knowing which parts of a program are unchanged can
help identifying test cases that need not be rerun. For many
of these tasks, a purely syntactic differencing may not provide
enough information for the task to be performed effectively.
This problem is especially relevant in the case of object-
oriented software, for which a syntactic change can have sub-
tle and unforeseen effects. In this paper, we present a tech-
nique for comparing object-oriented programs that identifies
both differences and correspondences between two versions
of a program. The technique is based on a representation
that handles object-oriented features and, thus, can capture
the behavior of object-oriented programs. We also present
JDIFF, a tool that implements the technique for Java pro-
grams, and empirical results that show the efficiency and
effectiveness of the technique on a real program.

1. INTRODUCTION

Software maintenance tasks often involve analyses of two
versions of a program: an original version and a modified ver-
sion. Many program-analysis tools that automate these tasks
require the knowledge of the locations of changes between the
two program versions. In addition, some tools also need the
mapping of entities, such as statements, basic blocks, and
methods, from the original version to their counterparts in
the modified version. Differencing algorithms can provide
information about the locations of changes and can classify
program entities as added, deleted, modified, or unchanged.

The results of these differencing algorithms are therefore
useful for many software-maintenance tasks. For example,
for program-profile estimation,® the differencing results, along
with the coverage or profile information for the original ver-
sion of the program, are used to estimate the coverage or
profile information for the modified version. This approach
eliminates the cost of rerunning the test suite on the modi-
fied version of the program to measure coverage or to obtain
profiles. The approach also facilitates the estimation of cov-
erage or profile information in cases in which this information
cannot be reproduced (e.g., coverage/profiles from deployed
software). For another example, the change information that
is produced by differencing is also useful for impact analysis

IProgram-profile estimation is also referred to as stale profile
propagation in Reference [12].

and regression testing. Impact analysis identifies the parts
of a program that are affected by changes and, thus, requires
knowledge of the location of such changes. Many regression
test selection techniques (e.g., [3, 10]) use change information
to select test cases to be rerun on modified versions of the
software.

There are a number of existing techniques for computing
differences between two versions of a program. However,
these techniques are limited in their ability to detect differ-
ences in object-oriented programs. The UNIX diff utility [7]
identifies textual differences between two files, and reports
them in terms of changed lines. Therefore, it provides purely
syntactic differences and does not consider changes in pro-
gram behavior indirectly caused by syntactic modifications.
Consider, for example, the two partial Java programs in Fig-
ure 1, the original program P and the modified version P’.

If we would inspect the output of diff, run on P and P’,
we would see that method B.m1 has been added in P’ and
that the exception-type hierarchy has changed. However,
without additional analyses, it would not be straightforward
to detect that, in P and P’, the call to a.m1 in D.m3 can
be bound to different methods, and the exception thrown in
D.m3 can be caught by a different catch block.

There are other differencing techniques that are targeted at
comparing versions of a program (e.g., [4, 5, 12]). However,
these techniques are not suitable for object-oriented code.
BMAT [12] cannot recognize, for example, differences caused
by changes in the exception hierarchy, and would overlook
that the exception thrown in D.m3 can be caught by differ-
ent catch blocks in P and P’. Semantic diff [5] is defined to
work only at the procedure level and cannot be straightfor-
wardly extended to work on entire object-oriented programs.
Horwitz’s technique [4] is also not suitable for object-oriented
programs, in that it is defined only for a simplified C-like lan-
guage.

To overcome problems with existing approaches, and pro-
vide the differencing information required for tasks such as
program-profile estimation, impact analysis, and regression
testing, we defined a new graph representation and a differ-
encing algorithm that uses the representation to identify and
classify changes at the statement level between two versions
of a program. Our representation augments a traditional
control-flow graph (CFG)? to model behaviors in the pro-
gram due to object-oriented features. Using this graph, we

2A control-flow graph is a directed graph in which nodes
represent statements and edges (possibly labeled) represent
flow of control between statements. A CFG has a unique
entry node that has no predecessors and a unique exit node
that has no successors.



Program P

public class A {
void mi1() {...}
}

public class B extends A {
void m2() {...}

}

public
public
public

class
class
class

El extends Exception {}
E2 extends E1 {}
E3 extends E2 {}

public class D {
void m3(A a) {
a.ml();
try {
throw new E3();

}
catch (E2 e) {...}
catch (E1 e) {...}

Program P’

public class A {
void m1() {...}
}

public class B extends A {
void ml1() {...}
void m2() {...}

}

public
public
public

class
class
class

El extends Exception {}
E2 extends E1 {}
E3 extends E1 {}

public class D {
void m3(A a) {
a.ml()

try {
throw new E3();

iatch(EQ e) {...}
catch(E1 e) {...}
}
}

Figure 1: Partial code for an original program (P) and the corresponding modified version (P’).

identify changes in those behaviors and relate them to the
point of the code where the different behavior occurs.

Our algorithm extends an existing differencing algorithm [6]
and consists of five steps. First, it matches classes, interfaces,
and methods in the two versions. Second, it builds enhanced
CFGs for all matched methods in the original and modified
versions of the program. Third, it reduces all graphs to a
series of nodes and single-entry, single-exit subgraphs called
hammocks. Fourth, it compares, for each method in the
original version and the corresponding method in the mod-
ified version, the reduced graphs, to identify corresponding
hammocks. Finally, it recursively expands and compares the
corresponding hammocks.

The main contributions of the paper are

e A new graph representation that models the behavior
of object-oriented programs.

e A differencing algorithm that works on the graph rep-
resentations and uses different heuristics to increase the
precision of the results.

e A set of empirical studies that shows the efficiency and
precision of an implementation of our algorithm.

2. DIFFERENCING ALGORITHM

In this section, first we give an overview of the algorithm
and discuss its input and output. Then, we discuss in de-
tail each of the levels at which the algorithm compares the
original and modified versions of the program. Finally, we
discuss the complexity of the algorithm.

2.1 Overview

Our algorithm, CalcDiff, given in Figure 2, takes as input
an original version of a program (P) and a modified version
of that program (P’). The algorithm also inputs two pa-
rameters that are used in the node-level matching. The first
parameter (LH) is the maximum lookahead that CalcDiff
uses when attempting to match nodes in methods. The sec-
ond parameter (S) is used when determining the similarity
of two hammocks. At completion, the algorithm outputs a
set of pairs (N) in which the first element is a pair of nodes
and the second element is the status—either “modified” or

“unchanged.” The algorithm also returns sets of pairs of
matching classes, interfaces, and methods in P and P’.

CalcDiff performs its comparison first at class and inter-
face levels, then at the method level, and finally at the node
level. The algorithm first compares each class in P with the
like-named class in P’, and each interface in P with the like-
named interface in P’, and produces sets of class pairs (C)
and interface pairs (I), respectively. For each pair of classes
and interfaces, CalcDiff then matches methods in the class
or interface in P with methods having the same signature
in the class or interface in P’; the result is a set of method
pairs (M). Finally, for each pair of concrete (i.e., not ab-
stract) methods in M, the algorithm constructs enhanced
CFGs (hereafter, ECFGs) for the two methods and match
nodes in the two ECFGs.

The next sections give details of CalcDiff. Throughout
the discussion, we use the code in Figure 1 as an example.

2.2 Class and Interface Levels

CalcDiff begins its comparison at the class and interface
levels (lines 1-2). The algorithm matches classes (resp., in-
terfaces) that have the same fully-qualified name; the fully-
qualified name consists of the package name followed by the
class or interface names. Matching classes (resp., interfaces)
in P and P’ are added to C (resp., I). Classes in P that do
not appear in set C are deleted classes, whereas classes in P’
that do not appear in set C are added classes. Analogous
considerations hold for interfaces. In the example programs
in Figure 1, each class in P has a match in P’, and, thus,
there is a pair in C for each class in P.

2.3 Method Level

After matching classes and interfaces, CalcDiff compares,
for each pair of matched classes or interfaces, their methods
(lines 3-4). The algorithm first matches each method in a
class or interface with the method with the same signature
in another class or interface. Then, if there are unmatched
methods, the algorithm looks for a match based on the name
only. This matching accounts for cases in which parameters
are added to (or removed from) an existing method, which
we found to occur in practice, and allows for increasing the
number of matches at the node level. Pairs of methods in P



Algorithm CalcDiff
Input: original program P

modified program P’

maximum look ahead LH

hammock similarity threshold S
Output: set of (class,class) C

set of (interface,interface) I

set of (method,method) M

set of ((node,node),status) N
Declare: Node n, n’

Begin: CalcDiff

1: compare classes in P and P’; add matched class pairs to C

2: compare interfaces in P and P’; add matched interface pairs
to I

3: for each pair (¢,c’) in C or I do

4:  compare methods; add matched method pairs to M

5:  for each pair (m,m’) in M do

6: create ECFGs G and G’ for methods m and m’

7 identify, collapse hammocks in G until one node n left
8: identify, collapse hammocks in G’ until one node n’ left
9: N = NU HmMatch(n,n’,LH,S)

10:  end for

11: end for

12: return C, I, M, N
end CalcDiff

Figure 2: Algorithm CalcDiff

and P’ that match are added to M. For example, method
ml in class A in P matches m1 in class A in P’. Thus, there
is a pair in M for each method in P. Conversely, method
B.m1 is added because it has no match in P.

2.4 Node Level

CalcDiff uses the sets of matched method pairs (M) to
perform matching at the node level. First, the algorithm con-
siders each pair of matched methods < m,m’ > in M, and
builds ECFGs G and G’ for m and m' (line 6). Then, the
algorithm identifies all hammocks in G and G’, and collapses
G and G’ to one node (lines 7-8); we call these nodes n and
n', respectively. Next, CalcDiff calls procedure HmMatch,
passing n, n/, LH, and S as parameters. HmMatch identifies
differences and correspondences between nodes in G and G’
(line 9), and creates and returns N, the set of matched nodes
and corresponding labels (“modified” or “unchanged”). Fi-
nally, CalcDiff returns N, C, I, and M.

In the next section, we discuss the ECFG, the represen-
tation we use to perform node matching. Then, we discuss
hammocks and how we process them. Finally, we present
and explain our hammock-matching algorithm, HmMatch.

2.4.1 Enhanced Control-Flow Graphs

When comparing two methods m and m’, the goal of our
algorithm is to find, for each statement in m, a matching (or
corresponding) statement in m’, based on the method struc-
ture. Thus, the algorithm requires a modeling of the two
methods that (1) explicitly represents their structure, and
(2) contains sufficient information to identify differences and
similarities between them. Although CFGs can be used to
represent the control structure of methods, traditional CFGs
do not suitably model many object-oriented constructs. To
suitably represent object-oriented constructs, and model their
behavior, we define the ECFG. ECFGs extend traditional
CFGs and are tailored to represent object-oriented programs.
In the following, we illustrate how the ECFG represents some
important Java features.

© @

Figure 3: ECFGs for D.m3 in P and P’ (Figure 1).

Dynamic Binding

Because of dynamic binding, an apparently harmless modifi-
cation of a program may affect call statements in a different
part of the program with respect to the change point. For
example, class-hierarchy changes may affect calls to meth-
ods in any classes in the hierarchy, and adding a method to a
class may affect calls to the methods with the same signature
in its superclasses and subclasses.

We illustrate how we model a call site, in which a method
m is called on an object o, to capture these modifications.
First, we create a call and a return node. Then, for each
dynamic type T that can be associated with o, we create
a callee node. A callee node represents the method that is
bound to the call when the type of o is T, and is labeled with
the signature of that method. We also create (1) a call edge
from the call node to each callee node, labeled with the type
that causes such a binding, and (2) a return edge from each
callee node to the return node. Note that if the call is static
(i-e., not virtual), there is only one callee node.

To illustrate, consider method D.m3 in P (Figure 1). The
ECFG for D.m3 is shown in Figure 3(a); it contains two
callee nodes (nodes 3 and 4) because a’s dynamic type can
be either A or B. Both added nodes correspond to the same
method, and thus have the same label, because B does not
override method m1.

Consider now one of the two differences between P and
P’ in Figure 1: the redefinition of method m1 in B. Such a
change causes a possibly different behavior in P and P’ for
the call to a.m1 in method D.m3: if the dynamic type of a
is B, the call results in an invocation of method A.m1 in P,
and in an invocation of method B.m1 in P’

Figure 3(b) shows how the different binding, and the pos-
sibly different behavior, is reflected in the ECFG for method
D.m3: the call edge labeled B from the call node for a.m1
(i-e., the call edge representing the binding when a’s type
is B) is now connected to a new callee node that represents
method B.ml. This difference between the ECFGs for D.m3
in P and P’ lets our analysis determine that this call to a.m1
may behave differently in P and P’. Note that a simple tex-
tual comparison would identify the addition of the method,
but it would require a manual inspection of the code (or some
further analysis) to identify the points in the code where such
change can affect the behavior of the program.



Variable and object types

When modifying a program, changing the type of a variable
may lead to changes in program behavior (e.g., if a long is
changed to an int). To identify these kinds of changes, in
our representation, we augment the name of scalar variables
with type information. For example, a variable a of type
double is identified as a_double in our representation. This
method for representing scalar variables reflects any change
in the variable type in the locations where that variable is
referenced.

Another possible change that may lead to subtle changes
in program behavior is the modification of class hierarchies
(e.g., moving a class from one hierarchy to another, by chang-
ing the class that it extends). All effects of these changes that
result in different bindings in P and P’ are captured by our
method-call representation. Other effects, however, need to
be specifically addressed. To this end, instead of explicitly
representing class hierarchies, we encode the hierarchy infor-
mation at each point where a class is used as an argument
to operator instanceof, as an argument to operator cast,
and as a type of newly created exception. To encode the
type information, we use globally-qualified class names. A
globally-qualified class name for a class contains the entire
inheritance chain from the root of the inheritance tree (i.e.,
from class java.lang.Object) to its actual type.® The inter-
faces that are implemented by the class are also included in
globally-qualified names. If a class implements more than
one interface, the names of the interfaces are inserted in al-
phabetical order. This method reflects changes in class hi-
erarchies in the locations where the change may affect the
program behavior. For example, nodes 7 and 19 in Figure 3
show the globally-qualified name for class E3 in P and P’,
respectively.

Exception Handling

As for dynamic binding, when the program is modified, the
presence of exception-handling constructs can cause subtle
side effects in parts of the code that have no obvious relation
to the modified parts of the code. For example, a modifica-
tion of the type of an exception, or of a catch block, can cause
a previously caught exception to go uncaught in the modi-
fied program, thus changing the flow of control in unforeseen
ways.

To identify these changes in the program, we explicitly
model, in the ECFG, exception-handling constructs in Java
code. We represent such constructs using an approach similar
to that used in Reference [3]. For each try statement, we
create a try node and an edge between the try node and the
node that represents the first statement in the try block.

We then create a catch node and a CFG to represent each
catch block of the try statement. Each catch node is labeled
with the type of the exception that is caught by the corre-
sponding catch block. An edge connects the catch node to
the entry of the CFG for the catch block.

An edge, labeled “exception”, connects the try node to
the catch node for the first catch block of the try statement.
That edge represents all control paths, from the entry node
of the try block, along which an exception can be propagated
to the try statement. An edge labeled “exception” connects
also the catch node for a catch block b; to the catch node for

3For efficiency, we actually exclude class Object from the
name, except that for class Object itself.

catch block b;41 that follows b; (if any). This edge represents
all control paths, from the entry node of the try block, along
which an exception is (1) raised, (2) propagated to the try
statement, and (3) not handled by any of the catch blocks
that precede b;11 in the try statement.

Our representation models finally blocks by creating a CFG
for each finally block, delimited by finally entry and finally
ezit nodes. An edge connects the last node in the correspond-
ing try block to the finally entry node. The representation
also contains one edge from the last node of each catch block
related to the finally to the finally entry node. If there are
exceptions that cannot be caught by any catch block of the
try statement, and there is at least one catch block, we also
connect the catch node for the last catch block to the finally
entry node.

Because the information we use to build the exception-
related part of the ECFG is computed through interprocedu-
ral exception analysis [11], we can represent both intra- and
inter-procedural exception flow. If an exception is thrown
in a try block for a method m, the node that represents the
throw statement is connected to (1) the catch block in m that
would catch the exception, if such a catch block exists, (2)
the finally entry node, if no catch block can catch the excep-
tion and there is a finally block for the considered try block,
or (3) to the exit node of m’s ECFG, otherwise. Conversely,
if an exception is thrown in method m not from within a
try block, the node that represents the throw statement is
always connected to the exit node of m’s ECFG.

For example, consider again method D.m3 in P (Figure 1)
and its ECFG (Figure 3(a)). The ECFG contains a try node
for the try block (node 6) and catch nodes for the two catch
blocks associated with the try block (nodes 8 and 10). The
catch nodes are connected to the entry nodes of the CFGs
that represent the corresponding catch blocks (nodes 9 and
11). Also, the node that represents the throw statement in
the code is connected to the catch node whose type matches
the type of the exception (edge < 7,8 >).

Consider now the other difference between P and P’: the
modification in the type hierarchy that involves class E3. E3
is a subclass of E2 in P and a subclass of E1 in P’. Such
a change causes a possibly different behavior in P and P’
because the exception thrown in method D.m3 is caught by
different catch blocks in P and P’. Because, in P’, class E3
is no longer a subclass of £2; edge < 7,8 >, which connects
the throw node to the catch node for exception E2 in P, is
replaced by edge < 19,22 >, which connects the throw node
with the catch node for exception E1 in P’.

Figure 3(b) shows how the possibly different behavior is
reflected in our representation: the node that represents the
throw statement is connected to two different catch nodes in
the ECFGs for D.m3 in P and P’. In addition, the nodes that
represent the throw statement in P and P’ (nodes 7 and 19)
differ because of the use of globally-qualified names for the
exception types. These differences between the two ECFGs
let our analysis determine that, if the throw statement is
traversed, P and P’ may behave differently. Note that this
would occur also for an exception that propagates outside the
method, due to the difference between the globally-qualified
names in nodes 7 and 19. Also in this case, a simple textual
comparison would only allow us to identify the change in
the type of E3, whereas identifying the side effects of such a
change would require further analysis.



Figure 4: ECFG for D.m3 (a), intermediate hammock graph
for D.m3 (b), and resulting hammock node for D.m3 (c)

Synchronization

Java provides explicit support for threading and concurrency
through the synchronized construct. Using the synchronized
construct, Java programmers can enforce mutual exclusion
semaphores (mutexes) or define critical sections, that is, atomic
blocks of code. Synchronized areas of code can be declared
at the block, method, and class level.

In the ECFG, we account for synchronized areas of code by
creating two special nodes: synchronize start and synchronize
end. A synchronize start node is added before the node that
represents the first statement of a synchronized area of code.
Analogously, a synchronize end node is added after the node
that represents the last statement of a synchronized area of
code.

In a program that uses synchronized constructs, changes
in behavior can occur because (1) an area of code that was
not synchronized becomes synchronized, (2) an area of code
that was synchronized is no longer synchronized, or (3) a
synchronized area is expanded or contracted. In the ECFG,
these cases are suitably captured by addition, removal, or
replacement of synchronize start and synchronize end nodes.

Reflection

In Java, reflection provides runtime access to information
about classes’ fields and methods, and allows for using such
fields and methods to operate on objects. In the presence of
reflection, our representation can fail to capture some of the
behaviors of the program. For example, using reflection, a
method may be invoked on an object without performing a
traditional method call on that object. Although some uses
of reflections can be handled through analysis, others require
additional, user-provided information. In our work, we as-
sume that such information is available and can be leveraged
for the analysis. In particular, in the case of dynamic class
loading, we assume that the classes that can be loaded (and
instantiated) by name at a specific program point are speci-
fied by the user.

24.2

Our algorithm uses hammock graphs (hereafter, hammocks)
for its comparison of two methods. Hammocks are single-

Hammocks

entry, single-exit subgraphs [2] and provide a way to impose
a hierarchical structure on the ECFGs that facilitates the
matching. Formally, if G is a graph, a hammock H is an
induced subgraph of G with a distinguished node V in H
called the entry node and a distinguished node W not in H
called the ezit node such that

1. All edges from (G - H) to H go to V.
2. All edges from H to (G - H) go to W.

Similar to the approach used in Reference [6], once a ham-
mock is identified, our algorithm reduces it to a hammock
node in three steps. First, the set of nodes inside the ham-
mock is replaced by a new node. Second, all incoming edges
to the hammock are redirected to the new node. Third, all
edges leaving the hammock are replaced by an edge from the
new node to the hammock exit. The resulting graph at each
intermediate step is called a hammock graph.

Figure 4 illustrates the steps and hammock graphs in re-
ducing ECFGs for P to a single node. The regions inside
the dotted lines—mnodes 2-4, nodes 6 and 7, and nodes 8-
11—in Figure 4(a) represent the three hammocks that are
identified and then replaced by hammock nodes 2’; 6" and 8’,
respectively, as shown in Figure 4(b). Then, all nodes in Fig-
ure 4(b) are identified as a hammock and reduced to a single
node, as shown in Figure 4(c). To identify all hammocks, we
use an algorithm described in Reference [2].

A hammock H with start node s is minimal if there is no
hammock H’ that (1) has the same start node s, and (2)
contains a smaller number of nodes. Hereafter, when we use
the term hammock, we always refer to a minimal hammock,
unless otherwise stated.

2.4.3 Hammock Matching Algorithm

Our hammock matching algorithm, HmMatch, is given in
Figure 5. The algorithm is based on Laski and Szermer’s al-
gorithm for finding an isomorphism between two graphs [6].
HmMatch takes as input n and n’, two hammock nodes, LH,
an integer indicating the maximum lookahead, and S, a thresh-
old for deciding whether two hammocks are similar enough
to be considered a match. The algorithm outputs N, a set
of pairs whose first element is, in turn, a pair of matching
nodes, and whose second element is a label that indicates
whether the two nodes are “unchanged” or “modified.”

To increase the number of matches, we modified Laski and
Szermer’s algorithm to allow the matching of hammocks at
different nesting levels. This modification accounts for some
common changes that we encountered in our preliminary
studies, such as the addition of a loop or of a conditional
statement at the beginning of a code segment. In the follow-
ing, we first describe algorithm HmMatch and then present an
example of use of the algorithm on the code in Figure 1.

HmMatch expands the two input hammock nodes, n and
n’, into two hammock graphs, G. and G, (line 1). In the
expansion process, a dummy exit node is added and all edges
from nodes inside the hammock to the actual exit node are
redirected to the dummy node. At line 2, HmMatch adds
the two dummy exit nodes as a pair of matching nodes to
set N. Then, the algorithm starts matching nodes in the
two graphs by performing a depth-first pairwise traversal of
G. and G, starting from their start nodes. Therefore, at
line 3, the pair of start nodes is added to stack ST, which
functions as a worklist. Each iteration of the main while
loop (lines 4-28) extracts one node pair from the stack and
checks whether the two nodes match. The body of the loop



procedure HmMatch
Input: hammock node in original version n,
hammock node in modified version n’
maximum lookahead LH
hammock similarity threshold S
Output: set of pair <{node,node},label> N
Use: succs(A) returns set of successors of each node a in A
comp(m,n, S, N) returns true if m and n are matched
edgeMatching(n,n’) returns matched outgoing edge pairs
Declare: stack of < node,node > ST
current depth d
expanded graphs G, and G,
current nodes ¢ and ¢’
lookahead node sets L and L’
pair < node, node > match

Begin: HmMatch

1: expand n and n’ one level to graphs Ge and G7,

2: add exit-node label pair < {z,z’}, “unchanged” > to N
3: push start node pair <s,s’> onto ST

4: while ST is not empty do

5: pop <c,c’> from ST

6: if ¢ or ¢’ is already matched then

7
8

continue

: end if
9: if comp(c,c’, S, N) then
10: match = {c,c'}
11:  else
12: match = null; L = {c}; L' = {c'}
13: for (d=0;d < LH;d+ +) do
14: L = succs(L); L' = suces(L')
15: if /¢ comp(c, p’, S, N) VVper comp(c’,p, S, N) then
16: set match to the first pair that matches
17: break
18: end if
19: end for
20:  end if
21: if match != null then
22: push <match,“unchanged” > onto N
23: set ¢ and ¢’ to the two nodes in match
24:  else
25: push <{c,c’},“modified” > onto N
26: end if
27: push a pair of sink nodes for each edge pair returned from

edgeMatching(c, c’') onto ST
28: end while
end HmMatch

Figure 5: A hammock matching algorithm

first checks whether any of the nodes in the current pair is
already matched (line 6). A matched node that has already
been visited must not be considered again; therefore, if this
is the case, the algorithm continues by considering the next
pair in the worklist (line 7).

To compare two nodes, HnMatch invokes comp(c,c’, S, N)
(line 9), where ¢ and ¢’ are the two nodes to compare, S is
the similarity threshold for matching hammocks, and N is the
set of matching nodes. Unless ¢ and ¢’ are hammocks, comp
returns true if the two nodes’ labels are the same. If ¢ and ¢’
are hammocks, comp (1) recursively calls HnMatch, to obtain
the set of matched and modified pairs, and (2) computes the
ratio of unchange-matched pairs in the set to the number of
nodes in the smaller hammock. If the ratio is greater than
threshold S, comp returns true (i.e., the two hammocks are
matched) and pushes all pairs in the set returned by HmMatch
onto N. Otherwise, comp returns false.

If two nodes c and ¢’ are matched (i.e., comp returns true),
they are stored in variable match as a pair (line 10) and
further added to the set of matched nodes with label “un-
changed” (line 22). Otherwise, HuMatch tries to find a match
for ¢ (resp., ¢') by examining ¢"’s (resp., ¢'s) descendants, up
to a given maximum lookahead (lines 12-19). First, match
is initialized to null, and the lookahead sets L and L’ are
initialized to contain only the current nodes (line 12). The
algorithm then executes the for loop until a match is found

or depth d reaches the maximum lookahead LH (lines 13-
19). At each iteration, the algorithm updates L and L’ to
the sets of successors of their members, obtained by calling
procedure succs (line 14). suces(L) returns, for each node [
in L and each outgoing edge from [, the sink of such edge. If
node [ is a hammock node, succs returns a set that consists
of the start node and the exit node of the hammock. In this
way, a match can occur between nodes inside hammocks at
different nesting levels. After computing the lookahead sets
L and L', the algorithm compares each node in set L’ with ¢
and each node in set L with ¢’ (line 15). If there is a match,
the search stops, and the first matching pair found is stored
in variable match (lines 16-17). The matching pair is then
added to the set of matched nodes with label “unchanged”
(line 22). After two nodes have been matched as unchanged,
c and ¢’ are set to be the two nodes in the matching pair
(line 23).

If no matching is found, even after the lookahead, ¢ and ¢’
are added to the set of matched nodes with label “modified.”

After processing nodes ¢ and ¢/, the outgoing edges from
the two nodes are matched by calling edgeM atching(c,c’).
edgeM atching matches outgoing edges from ¢ and ¢’ based
on their labels. For each pair of matching edges, the corre-
sponding sink nodes are pushed onto worklist ST (line 27).
At this point, the algorithm continues iterating the main
while loop until ST is empty.

When the algorithm terminates, all nodes in the old version
that are not in any pair (i.e., that have not been matched
to any other node) are considered deleted nodes. Similarly,
all nodes in the new version that are not in any pair are
considered added nodes.

To better illustrate HmMatch, we consider a partial run of
CalcDiff on the example code in Figure 1. In particular, we
consider the execution from the point in which the pair of
methods D.m3 in P and P’ is compared (line 5). At line 6
of CalcDiff, the ECFGs for the methods are created, and
at lines 7 and 8 of the algorithm, hammocks in the ECFGs
are identified and reduced to single hammock nodes. Then,
at line 9, CalcDiff calls HmMatch, passing it the two ham-
mock nodes. For the example, we assume that the lookahead
threshold (LH) is 1, and that the hammock similarity thresh-
old (S) is 0.5.

HmMatch first expands the hammock nodes, adds the dummy
exit nodes, and suitably connects them (line 1). Fig. 6 shows
the resulting hammock graphs for the original and modified
version of the program. Then, HmMatch adds dummy exit
nodes 7 and 13 as a pair of matching nodes to set N (line 2)
and adds the pair of start nodes <1,8> to stack ST (line 3).

In the first iteration of the main while loop, the algorithm
extracts node pair <1,8> from ST (line 5). Because neither
node is already matched, the algorithm compares the two
nodes by calling comp(1,8,0.5, N) (line 9), which compares
the nodes’ labels and returns ¢rue. Therefore, the algorithm
sets match to this pair (line 10), adds the pair of nodes to NV
with label “unchanged,” and sets c and ¢’ to be nodes 1 and
8 (lines 22-23), which in this case leaves ¢ and ¢’ unchanged.
At this point, the outgoing edges from 1 and 8 are matched
by calling edgeM atching(1,8). Each node in the entry pair
has only one outgoing edge, and the two edges match, so the
pair of sink nodes < 2,9 > is pushed onto the worklist.

In the second iteration of the main while loop, because
nodes 2 and 9 are not already matched and are both ham-
mock nodes, comp (line 9) calls HmMatch(2,9,1,0.5). HmMatch
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Figure 6: Hammock graphs for the original and modified
version of D.m3.

expands nodes 2 and 9 to get the two graphs shown in Fig. 7,
matches the dummy exit nodes 17 and 21, and pushes the
pair of start nodes <14,18> onto ST1.* This pair is then
extracted from the stack and compared (lines 5-9). Because
both nodes have the same label, they are matched, and the
pair is pushed onto N; with label “unchanged” (lines 22-23).
edgeM atching is then called on the two nodes in the pair, 14
and 18; edgeM atching matches likely labeled edges and the
two pairs of sink nodes <15,19> and <16,20> are pushed
onto ST7.

In the next iteration of the main loop, the nodes in pair
<15,19> are compared, matched, and pushed onto N’ with
label “unchanged,” and the pair of direct successors of nodes
15 and 19, <17,21>, is then pushed onto STi. At the follow-
ing loop iteration, the nodes in pair <16,20> are compared.
Because they do not match, a lookahead is performed, try-
ing to match nodes 16 and 21 and nodes 20 and 17. Be-
cause neither comparison is successful, the pair <16,20> is
added to N7 with label “modified,” and the pair of successors
<17,21>, is then pushed onto ST (so the pair appears twice
on the stack). In the next two iterations, the pair <17,21>
is processed: because both nodes are already matched (being
the dummy exits), the algorithm skips them. At this point,
ST is empty and HmMatch returns to the calling procedure,
comp. Because 3 out of 4 nodes are unchange-matched, and
the similarity threshold is 0.5, comp classifies the two ham-
mocks as matched. Therefore, the pairs in N; are pushed
onto N, comp returns true (line 9), pair <2,9> is pushed
onto N with label “unchanged” (line 22), and pair <3,10>
is pushed onto ST (line 27).

Pair <3,10> is then matched and pair <4,11> is pushed
onto ST and then compared in the next iteration. For the
sake of space, we do not show the comparison of these two
hammocks and the rest of the execution of the algorithm.
The part of the example shown so far already illustrated
the main parts of the algorithm, including the matching of
hammock nodes and the lookahead.

2.5 Worst-Case Time Complexity

The dominating cost of the algorithm is the matching at
the node level. Let m and n be the number of nodes in

4We use the subscript notation to distinguish variables in
recursively called procedures.
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Figure 7: Hammock graphs for hammock nodes 2 and 9 in
Fiugure 6.

all matched methods in the original and modified version of
a program. Let k be the maximum number of nodes in a
method, and let the maximum lookahead be greater than k.
In the worst case, if no matching of hammocks at different
nesting levels occurs, the algorithm compares each node in
a method with all nodes in the matching method (at most,
k), leading to a worst-case complexity of O(k-min(m,n)).
If matching of hammocks at different nesting levels occurs,
the algorithm may compare a pair of nodes more than once.
To decide whether two hammocks are matched, HmM atch
compares each node in one hammock with nodes in the other
hammock and counts the number of matched nodes. If looka-
head is performed, the same pairs of nodes are compared
again in the context of the new pair of hammocks. The num-
ber of times the same pairs of nodes are compared depends on
the maximum nesting depth of hammocks and on the maxi-
mum lookahead. If d is the maximum nesting level of ham-
mocks and [ is the maximum lookahead, the worst-case com-
plexity of our algorithm is then O(k- min(d,1)- min(m,n)).

3. STUDIES

To evaluate our algorithm, we implemented a tool, JDIFF,
and performed three studies on a real, medium-sized pro-
gram. In this section, we describe our experimental setup,
present the studies, and discuss their results.

3.1 Experimental Setup

JDIFF is a Java tool that implements our differencing al-
gorithm. The tool consists of two main components: a dif-
ferencing tool and a graph-building tool. The differencing
tool inputs the original and modified versions of a program,
compares them, and outputs sets of pairs of matching classes,
methods, and nodes. To build ECFGs, the tool leverages the
capabilities of JABA (Java Architecture for Bytecode Analy-
sis),® a Java-analysis front-end developed within our research
group. We are currently using JDIFF in our JABA-based im-
pact analysis and regression testing tools [8].

As a subject for our studies, we use JABA, the analysis tool
described above. JABA contains 550 classes, 2800 methods,
and approximately 60KLOC. To evaluate the effectiveness of
our algorithm, we ran JDIFF on pairs of successive versions
of JABA extracted from its CVS repository.

For the timing experiments, we used two dedicated Pen-
tium4 2.80GHz PCs, with 1 GB of memory, running GNU/Linux
2.4.22.

There are several threats to the validity of our studies. An
external threat exists because we conducted the studies using
only one subject program. Thus, we cannot claim generality
for our results. However, the subject program is a real pro-
gram, that is used constantly by students and researchers in
and outside our group, and the changes considered are real
changes that include bug fixes and feature enhancements.

Shttp://www.cc.gatech.edu/aristotle/Tools/jaba.html



Another external threat to validity exists for the first study:
we used only one test suite throughout the study. Different
test suites may generate different results.

Threats to internal validity mostly concern possible errors
in our algorithm implementations and measurement tools
that could affect outcomes. To control for these threats,
we validated the implementations on known examples and
performed several sanity checks.

3.2 Study1

The goal of Study 1 is to assess the effectiveness of our
algorithm for a particular task—coverage estimation.

For the discussion, let P represent the original version of
the program, P’ represent the modified version of P, and
T represent a test suite used for testing P. The coverage
information for P, Cp, records, for each test case t € T,
entities exercised by t. Coverage estimation estimates Cp/
from Cp and the correspondences between entities in P and
P’. In this study, we consider a node in the ECFG as an
entity in the program. Therefore, the coverage information
is expressed in term of a set of nodes that each test case ¢
exercises.

We used four versions of JABA and its development test
suite 7', which contains 707 test cases and covers approx-
imately 60% of the program. The size of the change sets
between versions in the pairs ranges from a few modified
methods to approximately 20 methods.

Let P; represent version i of the JABA program, where
1 < i < 4. We first ran the test suite 1" on each version
P; to collect Cp,. Second, for each < Pi, P; > pair, where
2 <4 < 4, we computed the node correspondences between
P, and P; using JDiFr. Third, we computed the estimated
coverage as follows:

e For each node n in the modified version (i.e., the sec-
ond element of each < Py, P; > pair), if there exists a
correspondence between node n and some node n’ in
the original version (i.e., Pi), then we estimate that n
is exercised by the test cases in T that exercised n'.

e [f there is no such correspondence, we visit the prede-
cessors of n in the ECFG until either the predecessor
is a branch, or the predecessor is a node ¢ that has
a correspondent node ¢’ in P;. In the former case, n
is designated as “not exercised.” In the latter case,
we estimate that n is exercised by all the test cases in
T that exercised q’ (because n is in the same control-
dependence region of q).

Finally, we compared the estimated and the actual cov-
erage, and recorded the number of nodes whose coverage is
correctly estimated.

Average
Pair Number | Average | Correct/ | Correct/
of Nodes | Covered | Test Case | Test Suite
vl,v2 22026 | 12591.75 98.57 97.17
vl,v3 22063 | 12620.75 98.46 97.17
vl,v4 22315 | 12661.23 98.03 96.20

Table 1: Coverage-estimation results for part 1 of Study 1.

Table 1 shows, for each pair of versions, the number of
nodes in the parts of the modified version that we consider
(Number of Nodes), the average number of nodes covered by
a test case (Average Covered), the number of nodes whose

coverage of each test case t € T is correctly estimated, aver-
aged over all test cases (Average Correct | Test Case), and
the number of nodes whose coverage of the entire test suite
is correctly estimated (Correct / Test Suite). For example,
there are 22,063 nodes in v3, and a single test case exercised
about 12,620 nodes on average. For this set of nodes, on
average, 98.46% of the nodes’ coverage for a single test case
is correctly estimated, and 97.17% of the nodes’ coverage for
the entire test suite is correctly estimated. The results show
that estimated coverage is high for the pairs we studied but
that, as expected, it slightly degrades as the change set be-
comes larger (i.e., when considering pairs < vl,v3 > and
< wvl,vd >).

To further evaluate the effectiveness of our algorithm when
used for coverage estimation, we applied it on program ver-
sions with a large number of changes. To this end, we ex-
tracted four additional versions of JABA from its CVS by
selecting a period of time in which JABA was undergoing a
major restructuring. We call these versions va, ..., vd. We
constructed pairs of versions using the first version va as the
first element of each pair. The sizes of the change sets in
these pairs are 15 methods for < va,vb >, 100 methods for
< va,ve >, and 150 methods for < va,vd >. The test suite
for these versions consists of 155 test cases, which covers ap-
proximately 45% of the program.

Average
Pair Number | Average | Correct/ | Correct/
of Nodes | Covered | Test Case | Test Suite
va,vb 19639 | 12199.60 96.25 95.30
va,ve 20076 | 12343.54 86.08 80.97
va,vd 20258 | 12316.49 84.70 77.81

Table 2: Coverage-estimation results for part 2 of Study 1.

Table 2 gives the data for this set of pairs of versions in
the same format as Table 1. The results show that, also
for this set of versions, the quality of estimated coverage
degrades when the change sets becomes larger. However,
for the largest change set, our algorithm still computes es-
timated coverage that correctly matches the actual coverage
for 84.70% of the nodes (on average) for the single test cases,
and for 77.81% of the nodes for the entire test suite. Our
results are consistent with the findings in Reference [1].

3.3 Study 2

The goal of Study 2 is to measure the efficiency of JDIFF
for various values of lookahead, L H, and hammock similarity
threshold, S.

In this study, we used the first three pairs of versions of
JABA that we used in Study 1. We ran JDIFF on each pair
of versions < Pi,P; >, where 2 < i < 4, with different
values for LH and S, and collected the running times. This
running time includes the time for creating the ECFGs, as
well as comparing and matching classes, interfaces, methods,
and nodes in the two programs.

Figure 8 shows the running time (in seconds) of JDIFF
on a number of pairs of versions, lookaheads, and similarity
thresholds. The x-axis represents the value of LH, and the y-
axis represents the running time for each pair of versions and
for two different values of S. For example, JDIFF took about
375 seconds when run on versions < v1,v2 > for (S > 0) and
LH of 10. We present the results for only two values of S
(S =0 and S > 0) because we found that, for this subject,
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Figure 8: Average time (sec) for various pairs of versions,
lookaheads, and similarity thresholds.

the running time is almost the same for S = 0.2,0.4, 0.6, and
0.8. Our results show that, LH staying the same, the value
of S affects the running time of the comparison. Intuitively,
with S = 0, the algorithm matches a hammock in the original
program’s ECFG with the first hammock found in the mod-
ified version’s ECFG. Thus, each hammock is compared at
most once, and the running time is almost the same regard-
less of the value of LH. In addition, because each hammock
is compared at most once, the running time for these cases
is less than for cases where S > 0, where a hammock may be
compared more than once. For S > 0, the number of times
a hammock is compared depends on the lookahead and on
the actual changes. As shown in the results, only in this case
does the time slightly increase when the lookahead increases.
Note that, in all cases, JDIFF took less than seven minutes
to compute the differences between a pair of versions.

3.4 Study3

The goal of Study 3 is to evaluate the effectiveness of our
algorithm compared to Laski and Szermer’s algorithm [6].

To do this, we compared the number of nodes that each
algorithm matches. For the study, we implemented Laski
and Szermer’s algorithm (LS) by modifying our tool. The
paper that presents LS does not discuss how to handle some
specific cases. For example, when two hammocks have the
same label, they are expanded and compared, but the algo-
rithm behavior is undefined in the case in which the expanded
graphs cannot be made isomorphic by applying node renam-
ing, node removing, and node collapsing. We handle those
cases in the same way for both algorithms. There are three
differences between the two algorithms: (1) LS does not use
the lookahead but searches the graphs until the hammock
exit node is found; (2) LS does not allow the matching of
hammocks at different nesting levels; and (3) LS does not
use the hammock similarity threshold but decides whether
two hammocks are matched by comparing the hammocks’
entry nodes only.

We ran both algorithms on the first three pairs of versions
of JABA used in Study 1, and counted the number of nodes
in each group of added, deleted, modified, and unchanged
nodes. We consider only nodes in modified methods because
added, deleted, and unchanged methods do not show differ-
ences in matching capability between the two algorithms. In
our preliminary studied, we found that LS identified, in the
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Figure 9: Percentage increase in matched nodes.

modified methods, about 5,000 nodes as added and about
5,000 nodes as deleted.

Figure 9 presents the results of this study. The x-axis rep-
resents the size of LH, and the y-axis shows, for each pair
of versions and values of S, the percent increase in the num-
ber of matched nodes over the number of nodes identified as
added by LS For example, our algorithm (for S > 0, and
LH = 20) matches about 55% more nodes than LS when
both algorithms run on the same pair < v1l,v2 >. In this
case, our algorithm matches an additional 2750 nodes over
the number of nodes matched by LS. The results show that
the increase achieved by our algorithm ranges from about
17% to over 65%. Note that added nodes identified by LS or
CalcDiff can be classified as (1) code that is actually added,
or (2) code that cannot be matched because of the limita-
tions of the algorithms. Therefore, to measure the relative
effectiveness of the two algorithms, the percentage should
be computed using the number of nodes only in the second
category. In this sense, the percent improvement that we
measured in our study is an underestimate of the actual im-
provement.

The results also show that the number of matched nodes
increases when L H increases, which is intuitively reasonable.
Finally, the results show that the number of matched nodes
is slightly higher in the case of S > 0 than in the case of
S =0, for LH > 10.

4. RELATED WORK

There are a number of existing techniques for computing
differences between two versions of a program that are re-
lated to ours. The UNIX diff utility [7], as discussed in the
Introduction, compares two text files line-by-line and out-
puts differences in the files. However, because diff compares
files line-by-line, it does not recognize differences that can
occur because of changes in object-oriented features such as
changes related to polymorphism and exception handling. In
contrast, our differencing technique does handle these object-
oriented features, and thus, can provide information that can
be used for various software engineering tasks.

BMAT [12] (binary matching tool) is similar to our algo-
rithm. However, it performs matching on both code and data
blocks between two versions of a program in binary format.
BMAT uses a number of heuristics to find matches for as
many blocks as possible. Being designed for the purpose of



program profile estimation, BMAT does not provide informa-
tion about differences between matched entities (unlike our
algorithm). Moreover, BMAT does not compute information
about changes related to object-oriented constructs.

Semantic diff [5], compares two versions of a program
procedure-by-procedure. Semantic diff computes a set of
input-output dependencies for each procedure and identifies
the differences between two sets from the same procedure in
the original and the modified versions. However, semantic
diff is performed only at the procedure level and may miss
some changes that do not affect the dependencies of variables
(e.g., changing branch conditions) but may drastically change
the behavior of the program. Furthermore, because there is
no input-output dependency changes, it will fail to detect
some kinds of changes (e.g., constant value changed) that
may affect the program behavior. Conversely, our technique
is able to identify these differences.

Horwitz’s approach [4] computes both syntactic and se-
mantic differences between two programs using a partitioning
algorithm. Horwitz’s technique is based on the program rep-
resentation graph (PRG). Because PRGs are defined only for
programs written in a language with scalar variables, assign-
ment statements, conditional statements, while loops, and
output statements only, the technique is limited and cannot
be used in general. In particular, it cannot be applied to
object-oriented programs.

Laski and Szermer present an algorithm that analyzes cor-
responding control-flow graphs of the original and modified
versions of a program [6]. Their algorithm localizes pro-
gram changes into clusters, which are single entry, single exit
parts of code. Clusters are reduced to single nodes in the
two graphs, and then these nodes are recursively expanded
and matched. As we discussed in Section 2.4.3, our algo-
rithm is based on this algorithm. However, we make several
modifications to the algorithm to improve matching capa-
bility (e.g., matching hammocks at different nesting levels,
hammock similarity metric, and threshold). In Study 3, we
show how our algorithm outperforms, for the case consid-
ered, Laski and Szermer’s approach in terms of effectiveness
in matching two programs.

Although not directly related to this work, Reference [9]
presents an interesting study of the type of changes that oc-
cur in object-oriented systems during maintenance. Their
results confirm that changes in such systems often involve
changes in the behavior of object-oriented constructs that
must be suitably handled.

S. CONCLUSION

In this paper, we presented an algorithm for comparing
two Java programs. The algorithm is based on a method-
level representation that models the object-oriented features
of the language. Given two programs, our algorithm identi-
fies matching classes and methods, builds our representation
for each pair of matching methods, and compares the rep-
resentation for the two methods to identify similarities and
differences. The results of our differencing can be used for
various development and maintainance tasks, such as impact
analysis and regression testing.

We also presented a tool that implements our technique
(JDI1FF), and a set of studies that show the effectiveness and
efficiency of the approach. Study 1 shows how our differenc-
ing technique can be successfully applied to perform coverage
estimation. Study 2 illustrates the efficiency of the technique
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for different execution parameters. Study 3 compares our
technique with the most closely related existent technique
and shows that our technique achieves improvements from
17% to over 65% in terms of matching unchanged parts of
the code.

In future work, we will investigate additional heuristics to
further improve the matching results. Our initial experiences
in this direction show that there are a number of tradeoffs,
in terms of execution cost versus precision, that can be lever-
aged. We will also study typical changes in evolving system
to assess whether the differencing algorithm could take ad-
vantage of known change patterns. Finally, we will inves-
tigate the use of our differencing algorithm to perform test
suite augmentation, that is, selecting new test cases for a
modified system based on the types of changes performed on
the system.
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