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ABSTRACT
Framework-specific models represent the design of applica-
tion code from the framework viewpoint by showing how
framework-provided concepts are implemented in the code.
In this paper, we describe an experimental study of the
static analyses necessary to automatically retrieve such mod-
els from application code. We reverse engineer a number
of applications based on three open-source frameworks and
evaluate the quality of the retrieved models. The models
are expressed using framework-specific modeling languages
(FSMLs), each designed for one of the open-source frame-
works. For reverse engineering, we use prototype implemen-
tations of the three FSMLs. Our results show that for the
considered frameworks rather simple code analyses are suffi-
cient for automatically retrieving framework-specific models
form a large body of application code with high precision
and recall.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.13 [Software Engineering]: Reusable Soft-
ware—Reuse models

General Terms
Design, Documentation, Languages

Keywords
reverse engineering, framework-specific models, framework-
specific modeling languages, static analysis, object-oriented
frameworks

1. INTRODUCTION
Object-oriented frameworks are widely used to implement

reusable designs. Domain concepts provided by a framework
are implemented in the application code by writing frame-
work completion code. Unfortunately, the concept instances
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are often not easily recognizable by developers directly in
the code because they are scattered across and tangled with
the code and buried in a large amount of implementation
details. Framework-specific models have been proposed to
address this problem by offering an abstract view of the ap-
plication code from the viewpoint of the framework [2, 3].
Such models explicitly represent the instances of framework-
provided concepts that are implemented in the application
code.

One way of formalizing framework-provided concepts is
by decomposing them into hierarchies of features [3, 8]. Fea-
tures are distinguishing characteristics/properties of a con-
cept and allow discriminating among concept instances. Fea-
tures may correspond to structural or behavioral patterns in
the application code. Identifying the matches of the pat-
terns in the code allows determining the presence and the
values of the features in the model. While the structural
patterns can be determined statically with full precision by
simple code queries, precisely determining matches of behav-
ioral patterns in the application code using static analysis is
potentially undecidable.

In this paper, we report on a study we conducted to mea-
sure the precision and recall of reverse engineering using
code queries that locate matches of behavioral patterns in
the completion code. The study was executed in two phases:
i) identification of types of patterns and their correspond-
ing code queries, and ii) evaluation of the precision and re-
call of code queries. In the first phase, we analyzed map-
pings attached to features from three example Framework-
Specific Modeling Languages (FSMLs) [3] designed for Java
Applet [20], Apache Struts [5], and a part of the Eclipse
Workbench [18] frameworks. FSMLs are a kind of domain-
specific modeling languages that are designed for an area of
concern of an object-oriented framework and can be used
for expressing framework-specific models. The result of the
analysis is a classification of patterns that the features cor-
respond to and code queries that were implemented in the
prototypes of the FSMLs. In the second phase we reverse
engineered a large number of example applications built on
top of the three frameworks using the prototype implemen-
tations of the FSMLs. We then verified the correctness of
the retrieved framework-specific models and calculated pre-
cision and recall of the code queries. Additionally, we cat-
egorized common false positives and false negatives of the
code queries and proposed refined versions that would reach
100% precision and recall for the studied applications.

The intended audience of this paper is primarily tool buil-
ders interested in retrieving framework-specific models from
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application code. They can learn about specific approxima-
tions of behavioral patterns and their effectiveness. Also,
the reverse engineering community interested in analysis of
framework completion code can learn about the particulars
of the analysis in the context of frameworks. Another target
audience is researchers working on static analyses. These re-
searchers can use the study results as a source of ideas of
how the retrieval of framework-specific models could benefit
from improved static analyses. And finally, the designers of
modeling languages can learn about different types of struc-
tural and behavioral code patterns that can be used to define
the mapping between models and code.

The main contribution of this paper is providing evidence
that the efficient and precise retrieval of models that repre-
sent the dynamic interaction between application code and
frameworks is feasible. We argue that by concentrating on
the framework boundary and leveraging framework-specific
knowledge, rather simple code queries become sufficient. Fur-
thermore, we provide precise definitions of behavioral code
patterns using meta pointcuts, code queries that can be used
for pattern retrieval approximations, and discuss possible
false positives and negatives of those queries.

The remainder of the paper is organized as follows. In Sec-
tion 2 we motivate the study and discuss the challenges of
and the requirements for static analysis of framework com-
pletion code. In Section 3 we provide the necessary back-
ground information on framework-specific models. Next, in
Section 4 we describe the setup of the study we conducted,
followed by Sections 5 and 6, where we describe the resulting
data. In Section 7 we discuss the data as well as the threats
to validity. We present the related work in Section 8 and
conclude the paper in Section 9.

2. CHALLENGES OF STATICALLY
ANALYZING COMPLETION CODE

Framework-specific models describe how concepts provided
by the framework are implemented in the completion code.
Concept instances are characterized by configurations of fea-
tures and the features correspond to structural and behav-
ioral patterns in the completion code. Therefore, automatic
extraction of framework-specific models requires the retrieval
of structural and behavioral patterns from the completion
code using static analysis.

Unfortunately, static analysis of framework completion
code is difficult. One reason is the inversion of control in-
herent to framework design, whereby the main threads of
control belong to the framework and the framework passes
the control to the application using callback methods. Due
to the inversion of control, both the application and the
framework need to be considered during the analysis. Also,
frameworks commonly interpret configuration files and use
reflection to dynamically load and instantiate application
classes. Therefore, the construction of the complete and
precise control flow graph, which is a basis for many other
static analyses, is often impossible.

However, we believe that analyzing the complete code of
both the application and the framework is not necessary.
To understand how an application is using a framework and
extract framework-specific models, one must focus on the
framework boundary, that is, all places in the code where the
application interacts with the framework. The framework
boundary consists of all callback methods implemented in

the application and all references to the framework code
from the application.

Another characteristic of framework-based code is the use
of configuration files, which are declarative specifications in-
terpreted by a framework. The configuration files are used
not only for specifying parameters to the framework, but
also for assigning roles to code elements, such as classes and
methods, and defining relationships among code elements.
In some cases static analysis of the completion code is not
possible without interpreting the configuration files because
code elements are indistinguishable when only considering
the code (e.g., in Spring1 and Java Server Faces2 frame-
works).

Therefore, the retrieval of framework-specific models re-
quires both utilizing configuration files and using code queries
that i) do not require complete control flow graph informa-
tion and ii) perform the required static analyses on-demand
(i.e., compute partial control flow graphs).

Given these challenges and requirements for static analysis
of the completion code, we propose a number of code queries
that can be used for framework-specific model extraction.
The proposed code queries are both incomplete and unsound
approximations of behavioral patterns. In the next section
we describe how framework-specific models correspond to
code patterns and how the correspondence can be defined.

3. FRAMEWORK-SPECIFIC MODELS
Framework-specific models describe framework-provided

concepts as implemented in application code. For exam-
ple, consider a web application based on the Apache Struts
framework. The framework provides concepts such as form,
action, and forward. Forms accept input from the users and
actions process submitted forms. Actions return forwards,
which link to other actions or web pages. Instances of these
concepts may include a user login form and a login action,
which can return success and access denied forwards. A
framework-specific model for our example Struts application
would include these concept instances and could be used, for
example, to visualize the page flow of the application.

Frameworks impose sets of requirements that the com-
pletion code must satisfy in order to instantiate a certain
concept. Since such requirements can be fulfilled in many
different ways, instances of framework-provided concepts are
usually not uniform. For example, the Struts framework pre-
scribes subclassing and appropriate declarations in an XML
configuration file for the implementation of the concept ac-
tion. Also, actions can be implemented as, among other
choices, a basic action, a dispatch action, or a forwarding
action. In each case, a different framework-provided class
needs to be subclassed and values of different sets of at-
tributes need to be used in XML action declarations.

Framework-provided concepts can be captured in frame-
work-specific modeling languages (FSMLs) [3]. The abstract
syntax of an FSML defines a decomposition of a concept into
a hierarchy of features. Features represent distinguishing
characteristics of concepts and can be used to discriminate
among concept instances. Consequently, concept instances
are described by configurations of features. In the feature
hierarchy, features can be essential, mandatory, and optional
with respect to their parent feature. In a feature configu-

1http://www.springframework.org/
2http://java.sun.com/javaee/javaserverfaces/
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ration, if the parent feature is present, an essential feature
must be present, a mandatory feature should be present and
an optional feature may be present. A parent feature cannot
be present without its essential subfeatures, whereas miss-
ing mandatory subfeatures indicate an error in the config-
uration of the parent feature. A feature may also have a
type meaning that a value of that type can be associated
with the feature in the configuration. The columns labelled
FSML feature of Tables 3-5 contain features of the concepts
we considered in the study. The hierarchy of features is rep-
resented using indentation (subfeatures are further right).
Cardinalities of features are indicated in square brackets:
[0..1] for optional features, [1] for mandatory features, and
[0..*] and [1..*] for multiple features. Essential features are
marked using exclamation mark (!). The abstract syntax
tree of a framework-specific model is a feature configura-
tion and closely resembles the feature hierarchy. Such a
model contains instances of selected features, possibly many
instances of multiple features, and values associated with
features with types.

Features describing a concept instance can correspond to
structural and behavioral patterns in the completion code
that implements the instance. For example, the essential fea-
ture of an action specifies that the action must be assignable
to Struts’ Action class. Other features of an action corre-
spond to the method execute or action methods if an ac-
tion is a dispatch action. Yet other features correspond to
method calls used to find forwards returned by action meth-
ods. Features can also correspond to action and forward
declarations in an XML configuration file and to XML at-
tributes of these declarations, such as forward name. The
correspondence between the features and the code is speci-
fied in the mapping of the abstract syntax to the framework
API of an FSML [3]. A feature can be associated with a
mapping definition, which can be realized by a code query
and a code transformation. A code query matches a pattern
in the completion code. A code transformation creates, up-
dates, and removes a pattern corresponding to a feature in
the completion code. For example, instances of the concept
action could be determined by a code query returning classes
assignable to the Java class Action (based on the essential
feature). A code transformation can create or remove Java
classes implementing instances of the concept action. The
mapping enables automated round-trip engineering, where
the code can be created from the model, the model from the
code, and changes made to the code and the model can be
identified and reconciled [3].

In this paper we focus on the identification of the types of
code patterns that feature instances can correspond to, and
on the evaluation of code queries that realize the mapping
between the features and the completion code.

4. SETUP OF THE STUDY
We conducted the study in two phases. The purpose of the

first phase was to identify types of structural and behavioral
patterns that need to be matched in the completion code in
order to retrieve framework-specific models using the three
FSMLs. The purpose of the second phase was twofold: i)
determine the precision and recall of the code queries used in
the prototypes for the location of code patterns, and ii) pro-
pose refined versions of the code queries that would provide
100% precision and recall.

The input to the first phase of the study are three exam-

ple FSMLs, one for each of the following frameworks: Java
Applet [20], Apache Struts [5], and part of Eclipse Work-
bench [18] (detailed descriptions of the languages can be
found elsewhere [3]). The metamodels of the FSMLs consist
of abstract syntax and mapping definitions. Applet FSML
captures the concept of Java applet and has 20 features.
Struts FSML captures the concepts of action, form, and
forward, and has 43 features. It addresses the problem of
maintaining the referential integrity between Java code and
XML configuration file. Eclipse Workbench Part Interaction
(WPI) FSML captures the concepts of editor, view, selec-
tion provider, selection listener, part listener, and adapter
provider/adapter requestor. WPI FSML has 52 features and
models the interactions that can potentially occur among
workbench parts. WPI FSML also encodes many framework
rules and helps with maintaining the referential integrity be-
tween Java code and XML plug-in manifest files related to
part ids.

In this study we considered only features related to Java
code and omitted features related to XML configuration files
because such features can be retrieved with 100% preci-
sion and recall as well as features that represent referential
integrity constraints, which are realized by model queries.
The identified types of code patterns and the implemented
queries are presented in Section 5.

In the second phase of the study we used the prototype
implementations of the three FSMLs [3] to automatically re-
verse engineer a number of example applications. The pro-
totypes implement code queries that realize mapping defini-
tions of the FSMLs. The unit of analysis was a project : an
abstract entity that groups all source artifacts of the ana-
lyzed application. For the Java Applet framework, exam-
ple applets were grouped into two projects, one with 20
examples provided by Sun and one with 51 applets col-
lected from the Internet. Each of the Struts applications,
Apache Roller [4] (v.3.0), Mailreader [5] (v.1.3.8), and Cook-
book [5] (v.1.3.8), constitutes a separate project. For the
Eclipse Workbench framework, an application is encapsu-
lated as an Eclipse plug-in. Because Eclipse plug-ins form
complex dependency graphs, it is not possible to analyze
plug-ins separately: common plug-in dependencies (such as
org.eclipse.ui) would be analyzed multiple times. However,
by analyzing one of the most-dependent plug-ins, we can
analyze that plug-in and all other plug-ins it depends on at
once. In this study, the project consisted of the org.eclipse.-
pde.ui plug-in (v.3.2), which depends on many other ui plug-
ins including3 ant.ui, debug.ui, jdt.debug.ui, jdt.ui, ui, ui.edi-
tors, ui.ide, ui.views, and ui.workbench.texteditor. This al-
lowed us to analyze part interactions that can occur among
88 workbench parts (editors and views).

The result of the analysis reveals the precision and recall
with which the queries were able to approximate the code
patterns. By manually inspecting the code we were able
to identify categories of patterns missed by the used code
queries. Subsequently, we proposed refined versions of code
queries that would capture the patterns missed by the orig-
inal code queries. The queries obtained from this iterative
process are presented in Section 5 and the data relative to
their precision and recall is described in Section 6. All re-
sults are discussed in Section 7.

Data collection process. For a feature f, we consider

3We omit prefix org.eclipse. from the names.
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Structural Pattern Expr. Structural Element(s) Matched Abbreviation

c assignableTo: t matches if objects of the class c are assignable to the type t assignable

f fieldOfType: t matches if objects of the type t are assignable to the field f fieldOfType

c methodsOfSig: s matches methods with signature s that are implemented or overridden by the class c methodsOfSig

c allMethodsOfSig: s
matches methods with signature s that are implemented, overridden or inherited by the
class c

allMethodsOfSig

Behavioral Pattern Expr. Run-time Event Pattern(s) Matched Abbreviation

c callsTo: s receiver: r
matches method calls to methods with the signature s received by objects assignable to
the type r in the control flow of instances of the class c,

callsTo

callsTo($c o): call($s ) && target($r ) && cflow(execs(o))

c callsReceived: s
matches method calls to methods with the signature s received by objects assignable to
the class c

callsRec

callsRec($c o): call($s ) && target(o)

mc valueOfArg: i matches run-time values of the ith argument of the method call mc argVal

argVal(): $mc && args(.., $i, ..)

c argument: i ofCall: mc1
sameAsArg: j ofCall: mc2

matches if the ith argument of the method call mc1 points to the same object as the jth

argument of the method call mc2, in the control flow of objects of the class c
argSameObj

argSameObj($c o): $argVal(mc2, j ) && dflow[j, i] ($argVal(mc1, i )) && execs(o)

c methodCall: mc1 be-
fore: mc2

matches if in the control flow of instances of the class c, the method call mc1 occurs at
least once before the occurrence of method call mc2

before

before($c o): execs(o) && ($mc1+ $mc2)

m returnedObjectTypes: c
matches all possible types of the objects returned by the method m from the point of view
of the class c that implements, overrides, or inherits m

retTypes

retTypes(): execution($m ) && returnTypes() && this($c)

f assignedNull matches assignments to the field f with the null value assignNull

assignNull(Object o): set($f ) && args(o) && if(o == null)

f assignedNew: cs
matches assignments to the field f with an object returned by a constructor call with the
signature cs

assignNew

assignNew(): set($f ) && args(o) && dflow[o, i] (call($cs ) && returns(i))

Helper Definitions matches executions of methods in instances of class c

execs($c o) : execution(* *(..)) && this(o);

Table 1: Types of structural and behavioral code patterns

the total number of code patterns that all instances of the
feature f correspond to. The correspondence is specified
using pattern expressions attached to the features. For a
feature f let

– Af be the number of all patterns in the code that satisfy
the pattern expression,

– Qf be the number of patterns matched by the query,
– Cf be the number of patterns that satisfy the pattern

expression matched (correctly) by the code query,
– Mf be the number of patterns that satisfy the pattern

expression missed by the code query (false negatives),
– If be the number of patterns that do not satisfy the

pattern expression matched (incorrectly) by the code query
(false positives).

The following two equations hold:

Af = Cf + Mf (1)

Qf = Cf + If (2)

Precision (Pf ) and recall (Rf ) can be defined as follows:

Pf =
Cf

Qf
=

Cf

Cf + If
(3)

Rf =
Cf

Af
=

Cf

Cf + Mf
(4)

For a feature f, value Qf was returned by the prototypes
at the end of reverse engineering for the code queries used
by the prototypes. We then manually analyzed the code to
determine the values for Mf and If for the given query. The

analysis allowed us to propose the refined code queries that
would capture the false negatives and exclude false positives
of the previous query. Consequently, the values Qf , Mf and
If for the proposed code queries were obtained manually
by checking wheather each false negative and false positive
would belong to the results of the proposed query. Values
Cf were calculated using equation 2. We present the details
of the study in section 6.

5. CODE PATTERNS & CODE QUERIES
In order to retrieve framework-specific models, code pat-

terns specified by the mapping of the abstract syntax to
the framework API of an FSML must be matched in the
framework completion code. Code patterns can be classified
as structural or behavioral patterns. In general, structural
patterns consist of code elements and their static properties
as well as properties derived according to the static seman-
tics, such as resolved type and method bindings. Because
run-time events do not exist statically, behavioral patterns
consist of shadows [13] of the run-time events over the code.

The types of code patterns identified in the mapping defi-
nitions of the three FSMLs are summarized in Table 1. The
first column contains Smalltalk-like expressions that can be
used to specify the patterns. The last column defines ab-
breviations used to refer to the given pattern type in the
remainder of this paper. The second column presents de-
scriptions of the semantics of code patterns. The descrip-
tion specifies the patterns in the code that match the given
pattern expression. Since structural patterns can be fully re-
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Pattern T. Code query Result Abbreviation

callsTo c getCallsInHierarchy: s re-
ceiver: r

a set of method calls with the signature s within the bodies of the
class c and its superclasses, such that the receiver of each call is
assignable to the type r

getCallsWH∗

c getCallsCFlow: s receiver: r
a set of method calls with the signature s in the control flow of every
implemented, inherited, and overridden method of the class c, such
that the receiver of each call is assignable to the type r

getCallsCF

callsRec c getCallsReceived: s
a set of method calls with the signature s, such that the receiver of
each call is assignable to the type c

getCallsRec∗

c getCallsReceivedTI: s

a set of method calls with the signature s, such that the receiver of
each call is assignable to the type c. In the case when the type of
the receiver is more general then the type c, the query traverses the
receiver’s dataflow graph backwards to infer its more specific type

getCallsRecTI

argVal mc getArgValLiteralConstant: i
value of the ith argument of the method call mc retrieved from a
static final variable or a literal

getArgValLC∗

mc getArgValConstantProp: i
set of values of the ith argument of the method call mc retrieved
using interprocedural constant propagation limited in scope to the
class that contains the called method

getArgValCP

mc getArgValPartialEval: i
set of values of the ith argument of the method call mc retrieved
using partial evaluation

getArgValPE

argSameObj c argument: i ofCall: mc1 an-
dArg: j ofCall: mc2 isThis

true iff both the ith argument of the method call mc1 and the jth

argument of the method call mc2 are the literal this and the resolved
type of the literal is class c

argIsThis∗

c argument: i ofCall: mc1 an-
dArg: j ofCall: mc2 isPrvField-
GivenCSeq: cs

true iff both the ith argument of the method call mc1 and the jth

argument of the method call mc2 are references to the same private
field of class c whose value has been assigned once before both calls

argIsPrvFieldAO

before c is: mc1 before: mc2 inHierar-
chyGivenCSeq: cs

true iff the method calls mc1 and mc2 are located within the bodies
of callback methods m1 and m2, respectively, such that the method
m1 occurs before the method m2 in the callback sequence cs OR
true iff mc1 occurs before mc2 in the cflow of the method m1 if
m1 = m2. Methods m1 and m2 can be any implemented, inherited
or overridden methods of the class c

isBeforeWH∗

c is: mc1 before: mc2 inCFlow-
GivenCSeq: cs

true iff the method calls mc1 and mc2 occur in the control flows of
callback methods m1 and m2, respectively, such that the method
m1 occurs before the method m2 in the callback sequence cs OR
true iff mc1 occurs before mc2 in the cflow of the method m1 if
m1 = m2. Methods m1 and m2 can be any implemented, inherited
or overridden methods of the class c

isBeforeCF

retTypes m returnStmsWithinAndSuper: c

a set of types of objects returned by the method m (excluding Ob-
ject) retrieved from type bindings of return statements within the
body of the method, including bodies of super methods if called.
The type of the returned literal this is interpreted as class c

getRetTypesWS∗

m returnStmsMostSpecific-
Type: c

a set of types of objects returned by the method m (excluding Ob-
ject) retrieved from return statements, inferring the most specific
type in the data flow of each returned object. The type of the re-
turned literal this is interpreted as class c

getRetTypesMST

assignNew f getAssignedNew: cc a set of assignments to the field f with the constructor call cc getAssgnNew∗

assignNull f getAssignedNull a set of assignments to the field f with the null literal getAssgnNull∗

Table 2: Code queries for retrieval of behavioral patterns

trieved from the code by static analysis and their semantics
are rather simple, we deem unnecessary a more formal def-
inition in this paper. However, the semantics of behavioral
patterns, which is more difficult to define, is specified more
precisely using meta pointcuts in addition to the informal
description.

Pointcuts were introduced in aspect-oriented programming
[15] as expressions that define patterns of run-time events.
In that context, crosscutting behavior can be applied when
such patterns occur at run-time. In the context of FSMLs,
pointcuts provide the exact definitions of the behavioral
patterns that features correspond to. In Table 1, we use
meta pointcuts parameterized with variables from the pat-
tern expressions. The parameters of the meta pointcuts are
prefixed with a $ sign in order to distinguish them from
other pointcut variables. We reuse elements of syntax of
AspectJ [14] and some of its extensions, namely the Data
Flow Pointcut [17] and Tracematches [1]. For example, the
meta pointcut for the pattern type callsTo uses AspectJ’s
call, target and cflow pointcuts, and uses the execs helper

pointcut (see bottom of Table 1); whereas the pattern type
argSameObj uses dflow to specify that the argument of the
first method call is the same object as the argument of the
second call; and before uses the Tracematches notation to
define the order in which method calls occur. However,
current pointcut languages do not provide enough expres-
siveness and we needed to create a new primitive pointcut,
namely returnTypes, used in the pointcut for the pattern
type retTypes. This pointcut captures the run-time type of
the object returned by a method.

The mapping definitions of the analyzed FSMLs use pat-
tern expressions, whereas the prototype implementations of
the FSMLs use code queries for matching the required code
patterns. We present the code queries approximating be-
havioral patterns in Table 2. Queries marked with asterisk
(*) are the ones used in the prototypes, while the remaining
queries are the ones we propose as query refinements, which
are one of the results of the second phase of the study. Code
queries are defined in the Smalltalk-like notation, similar to
their corresponding pattern expressions in Table 1. For each
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FSML Feature Pattern Expression Query Type
Sun Internet Total

Af Mf Af Mf Af Mf Rf

[0..*] Applet class 20 0 51 0 71 0 100

![1] extendsApplet assignableTo: Applet 20 0 51 0 71 0 100

[0..*] showsStatus callsReceived: showStatus(String) getCallsRec 11 0 28 0 39 0 100

[0..1] message valueOfArg: 1
getArgValLC 5 4 18 2 23 6 73.91

getArgValCP 3 2 5 78.26

getArgValPE 0 0 0 100

[0..1] listensToMouse 10 0 13 0 23 0 100

![1] implementsMouseList[. . . ] assignableTo: MouseListener 10 0 13 0 23 0 100

![1] registers callsReceived: addMouseListener([. . . ]) getCallsRec 10 0 13 0 23 0 100

[1] deregisters callsReceived: removeMouseListene([. . . ]) getCallsRec 9 0 1 0 10 0 100

[1] deregistersSameObject argument: 1 ofCall: ../../registers [. . . ] argIsThis 9 0 1 0 10 0 100

[1] registersBeforeDe[. . . ] methodCall: ../../../registers before: ../.. isBeforeWH 9 0 1 0 10 0 100

[0..*] thread field 7 0 22 0 32 0 100

![1] typedThread fieldOfType: Thread 7 0 22 0 32 0 100

[1] initializesThread assignedNew: Thread(IRunnable) getAssgnNew 7 0 20 0 30 0 100

[1] nullifiesThread assignedNull getAssgnNull 6 0 12 0 17 0 100

[0..*] parameter callsReceived: getParameter(String)
getCallsRec 51 5 102 0 153 5 96.73

getCallsRecTI 0 0 0 100

[0..1] name valueOfArg: 1

getArgValLC 73 37 144 52 217 85 60.82

getArgValCP 17 4 21 90.32

getArgValPE 0 0 0 100

Table 3: Statistics for framework-specific models retrieved using Applet FSML

code query we provide a description of the results obtained
by statically applying the query to the code.

Code queries presented in Table 2 can be grouped based on
the kind of approximation they employ. We discuss potential
false positives and false negatives for each group.

One group are queries that approximate interprocedural
control flow graph of an object: getCallsWH and isBe-

foreWH. The idea is to search in the body of the class of
the object and its superclasses because the code implement-
ing the object is likely to be found there. Those queries can
potentially miss patterns (false negatives) located in helper
classes whose code is located outside the class of the object
(local and anonymous classes are included in the search).
Also, the queries can incorrectly identify patterns (false pos-
itives) in the superclasses, which reside in the bodies of over-
ridden methods, which are not called using super.

Another group of code queries are queries that rely on the
information about method callback sequence of the frame-
work: isBeforeWH/CF and argIsPrvField. The callback
sequence information is necessary because the control flow
graph of a class implementing callback methods is poten-
tially composed of disjoint graphs for each callback method,
unless the callback methods call each other, which is not
common. The query isBeforeWH will miss a pattern if at
least one of the method calls is in the control flow of a call-
back method, but not directly in the body of that method.
Similarly, the query argIsPrvField has to determine whether
the only field assignment occurred before the first method
call. The query is motivated by a very common program-
ming pattern, whereby an instance of a helper class is cre-
ated and assigned to a private field and then used as a pa-
rameter of service method calls. These queries will lead to
false negatives in cases where patterns cannot be traced back
to field initializations, a constructor or a callback method,
for which the precedence is known.

Another group are queries that traverse the dataflow graph
backwards beginning at a particular use of a variable. The
query getCallsRecTI determines the most specific type of

the method call receiver and therefore it can potentially
match patterns missed by the query getCallsRec which only
uses the static type binding of the receiver. Analogously, the
query getRetTypesMST determines the most specific type of
the returned variable and therefore it can potentially match
patterns missed by the query getRetTypesWS which only
uses the static type binding of the return expression. The
query getRetTypesWS will return an inappropriate type if
the object to be returned i) is assigned to a variable with
more general type than the object’s type and the variable is
returned or ii) the object is returned by a method called from
the return statement with more general return type than the
object’s type. The query getArgValCP locates all static val-
ues that a variable in question can assume by traversing the
dataflow graph of that variable.

The queries getAssgnNew and getAssgnNull only match
patterns in which the right-hand side of a field assignment
is the new expression or the null literal. These queries will
miss patterns where an intermediate variable is assigned first
and then the field is assigned with the variable. In these
cases, dataflow graph traversal is also necessary.

6. PRECISION & RECALL DATA
Tables 3, 4, and 5 present values Af , Mf , and Rf for ev-

ery code query used for the retrieval of the feature f . Each
feature in the column FSML Feature is associated with a
pattern expression presented in the column Pattern Expres-
sion. We provided values for some parameters of pattern
expressions to give the reader an idea about the meaning
of the features. We used [. . . ] to indicate omitted details.
The complete mapping definitions can be found elsewhere
[3]. Features that do not have a pattern expression are ab-
stract and are used solely for the purpose of grouping other
features (e.g., listensToMouse in Table 3). Pattern expres-
sions class and field indicate that a feature corresponds
to a Java class or a field, respectively. The properties of
classes or fields a feature will correspond to are specified by
the feature’s essential subfeatures. Values of the parameters
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FSML Feature Pattern Expression Query Type
Roller Mailreader Cookbook Total

Af Mf Af Mf Af Mf Af Mf Rf

[0..*] Action class 58 0 19 0 16 0 93 0 100

![1] extendsAction assignableTo: Action 58 0 19 0 16 0 93 0 100

[0..1]extendsDispatch[. . . ] assignableTo: DispatchAction 36 0 11 0 0 0 47 0 100

[0..*] actionMethod methodsOfSig: *(Action[. . . ], [. . . ], [. . . ], [. . . ]) 114 0 10 0 0 0 124 0 100

[0..1]overridesExecute methodsOfSig: execute([. . . ], [. . . ], [. . . ], [. . . ]) 14 0 13 0 15 0 42 0 100

[0..*] forwardImpl callsTo: findForward(String) getCallsWH 186 0 5 0 21 0 212 0 100

[1] name valueOfArg: 1 getArgValLC 186 0 4 0 21 0 211 0 100

Table 4: Statistics for framework-specific models retrieved using Struts FSML

of the pattern expressions can be either statically provided
in the metamodel or can be retrieved from parent features
during reverse engineering. For example, the pattern expres-
sion assignableTo: Applet for the feature extendsApplet

requires a Java class as the value of the parameter c, which,
in this case, will be the class that the parent feature Ap-

plet will correspond to. Values of the parameters can also
be the patterns that other features correspond to, in which
case, the features need to be specified using path expressions.
For example, the pattern expression attached to the feature
deregistersSameObject requires two method calls and uses
paths “../../registers” and “..” to retrieve calls that the
features registers and deregisters correspond to.

The column Query Type contains names of code queries
used for retrieving patterns of the given type. We did not
include queries for structural patterns for brevity. For be-
havioral patterns, we provide queries that were used by the
prototypes. If a query retrieved less than 100% of patterns,
we included data for queries we proposed in the subsequent
rows. The last column, Rf , contains the recall calculated
according to the equation 4. Except for one case, the preci-
sion is always 100% and we did not include it in the tables.
We discuss the data in Section 7.1.

7. DISCUSSION
The target use scenario for automatic extraction of frame-

work-specific models is to help application developers under-
stand how a framework is used by their application. Frame-
work-specific models are therefore non-essential during the
development and are not considered as a primary develop-
ment artifacts. They can, however, provide benefits to both
the developers and the designers [3]. In this context, using
FSMLs can be characterized as model-supported engineering
rather than model-driven engineering.

7.1 Precision & Recall
We discuss the data presented in Tables 3-5, each table

separately. We focus on the highlighted cells.
Surprisingly, for all except one features and the code queries

used in the prototypes the precision turned out to be 100%.
Precision depends on false positives and by checking all fea-
tures from the retrieved models we concluded that only one
was a false positive. As we discussed in Section 5 all of the
code queries can potentially return false positives. There-
fore, finding only one false positive in the models for the
analyzed applications only means that the particular appli-
cations we have chosen were written in a way that the queries
did not return many false positives.

Table 3. The feature message. The 6 values missed by
the first query were neither string literals nor static final
variables. One more value could be retrieved by constant

propagation and all remaining values could be retrieved by
partial evaluation (string concatenation). 16 values were not
retrieved because the value cannot be determined statically.
We did not count these values as false negatives.

The features deregistersSameObject and registersBe-

foreDeregisters. In all cases, both the registration and
deregistration calls used the literal this as an argument,
and all registration and deregistration calls were located in
the init and destroy methods, respectively. Both methods
are callback methods and init is called before destroy.

The feature thread. 32 fields of type Thread were found.
The reason why only 30 fields are initialized is that two ap-
plets declared two fields which were never used. Also, we
did not find any false negatives for the queries getAssgn-

New/Null, meaning that in all cases the right hand side of a
field assignment was a constructor call or the literal null.

The feature parameter. The 5 missed calls were located
in the constructor of a helper class and the constructor’s
parameter applet was the receiver of the calls. The helper
class is instantiated twice by the applet and the literal this
is used as a parameter to the constructor. Therefore, query
getCallsRecTI would infer that the applet is, in fact, the
receiver of the 5 method calls.

The feature name. The 85 missed parameter names can
be retrieved using constant propagation and loop unrolling.
In 3 cases (for 3 instances of feature parameter), a call to
getParameter was placed in a helper method, which was
then called 64 times with static values. Traversal of the
dataflow graph with the distance of at most 2 method calls
was necessary to reach the static values. In 2 cases (for 2
features), a call to getParameter was placed in a loop with
a statically known loop count. In the first case, the static
values of the method call parameter were constructed by
appending the loop count variable to a constant string and
loop unrolling would yield 4 values. In the second case, the
static values were retrieved from a static array using the
loop count variable as index. Again, loop unrolling would
yield additional 17 values. For 11 features, the static value
cannot be determined and these are not false negatives.

Table 4. The feature name. In the three example appli-
cations, the developers used either string literals or public

static final fields as arguments of the method call. The
reason is that the names used as parameters of the findFor-
ward method calls must match the names of forward decla-
rations in Struts’ XML configuration file. The single value
that was not retrieved comes from a HTTP request and we
did not count it as a false negative.

Table 5. The concept SelectionListener. The 8 work-
bench parts are selection listeners. In particular, one is a
global selection listener, six are global post selection listen-
ers, and one is a specific selection listener.
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FSML Feature Pattern Expression Query Type
org.eclipse.pde.ui

Af Mf Rf

[0..*] Part class 88 0 100

![1] implementsIView/IEditorPart assignableTo: IViewPart/IEditorPart concreteOnly: true 88 0 100

[0..*] SelectionProvider class 1 0 100

![1] implementsISelectionProvider assignableTo: ISelectionProvider 1 0 100

[1]registers callsTo: setSelectionProvider(ISelectionProvider) getCallsWH 1 0 100

[0..*] SelectionListener class 8 0 100

![1] implementsISelectionListener assignableTo: ISelectionListener 8 0 100

[0..1] globalSelectionListener callsTo: addSelectionListener(ISelectionListener) getCallsWH 1 0 100

[1] deregisters callsTo: removeSelectionListener(ISelectionListener) getCallsWH 1 0 100

[1] deregistersSameObject argument: 1 ofCall: ../.. sameAsArg: 1 ofCall: .. argIsThis 1 0 100

[1] registersBeforeDeregisters methodCall: ../../.. before: ../.. isBeforeWH 1 0 100

[0..1] globalPostSelectionListener callsTo: addPostSelectionListener(ISelectionListener) getCallsWH 6 0 100

[1] deregisters callsTo: removePostSelectionListener(ISelectionListener) getCallsWH 6 0 100

[1] deregistersSameObject argument: 1 ofCall: ../.. sameAsArg: 1 ofCall: .. argIsThis 6 0 100

[1] registersBeforeDeregisters methodCall: ../../.. before: ../.. isBeforeWH 4 0 100

[0..*] specificSelectionListener callsTo: addSelectionListener(String, ISelectionListener) getCallsWH 1 0 100

![1] registrationPartId valueOfArg: 1 getArgValLC 1 0 100

[1] deregisters callsTo: removeSelectionListener(String, ISelectionLi[. . . ]) getCallsWH 1 0 100

[1] deregistrationPartId valueOfArg: 1 getArgValLC 1 0 100

[1] deregistersSameObject argument: 2 ofCall: ../.. sameAsArg: 2 ofCall: .. argIsThis 1 0 100

[1] registersBeforeDeregisters methodCall: ../../.. before: ../.. isBeforeWH 0 0 100

[0..*] PartListener class 10 0 100

![1] implementsIPartListener assignableTo: IPartListener 10 0 100

[1] registers callsTo: addPartListener(IPartListener) getCallsWH 10 0 100

[1] deregisters callsTo: removePartListener(IPartListener) getCallsWH 10 0 100

[1] deregistersSameObject argument: 1 ofCall: ../../reg[. . . ] sameAsArg: 1 ofCall: ..
argIsThis 16 6 62.5

argIsPrvFieldAO 0 100

[1] registersBeforeDeregisters methodCall: ../../../registers before: ../..
isBeforeWH 10 6 62.5

isBeforeCF 0 100

[0..*] AdapterProvider class 44 0 100

![1] providesAdapter allMethodsOfSig: Object getAdapter(Class) 44 0 100

![1..*] adapters returnedObjectTypes
getRetTypesWS 191 59 69.11

getRetTypesMST 0 100

[0..*] AdapterRequestor class 22 0 100

![1..*] requestsAdapter callsTo: getAdapter(Class) receiver: IWorkbenchPart getCallsWH 69 0 100

[1] adapter valueOfArg: 1 getArgValLC 62 0 100

Table 5: Statistics for a framework-specific model retrieved using WPI FSML

The features deregistersSameObject. All patterns were
matched because the literal this was used in both the reg-
istration and deregistration calls.

The features registersBeforeDeregisters (of selection
listeners). The 3 patterns not matched by the query (2 for
post selection listeners and 1 for specific selection listener)
are not false negatives because the order of method calls
cannot be determined statically: the registration and the
deregistration calls are invoked from the UI actions.

The concept PartListener. The features deregisters-

SameObject and registersBeforeDeregisters. All part
listeners inherit behavior from an abstract view, where the
literal this is used in the registration and the deregistration.
Both calls occur in the createPartControl and dispose

methods, which are callback methods. Both calls are not
false positives because all part listeners delegate to super in
createPartControl and dispose methods, which they over-
ride. Six of the part listeners inherit additional registration
and deregistration calls from another abstract view, which
registers and deregisters an instance of a helper part listener.
The instance of the helper listener is stored in a private field
and is assigned only once before the registration. The reg-
istration occurs in the cflow of createPartControl and the
deregistration occurs in the cflow of dispose but not in their

bodies, which is why the pattern was missed by beforeWH.
The concept AdapterProvider. The feature adapters.

The 59 patterns missed by the query getRetTypesWS can be
divided into two categories, whereby i) the return statement
delegates to a factory method and ii) the return statement
returns a variable. In the first category, the factory method’s
return type is more general then the type of the returned ob-
ject. In the second category, the type of the variable is more
general than the type of the returned object assigned to the
variable. The query getRetTypesMST captures all patterns
by analyzing the dataflow of the returned object, beginning
at the return statement, and inferring the most specific type
of the object. In ten cases the exact type could not be found
because of polymorphic calls (in most of these cases, the type
of the receiver was an interface).

The concept AdapterRequestor. The features request-

sAdapter and adapterType. The 7 adapter requestors in-
herit the adapter request call from an abstract multi-page
editor class, where the editor simply delegates the call to a
page with an active editor. The argument value cannot be
statically determined and we did not count these cases as
false negatives. The only one false positive is because an
editor overrides a method from the abstract superclass that
contains the adapter request call and does not call super.
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It is important to note that even if a value of an argu-
ment of a method call cannot be statically determined, a
framework-specific model still provides traceability to the
method call. In the case of the Struts FSML, where retriev-
ing the names of forwards is critical for referential integrity
checking with the XML configuration file, the results show
that such values are statically available in the code.

Finally, the weighted average recall for queries that missed
patterns is 82.33% for getArgValueLC, 82.35% for argIsThis,
76% for isBeforeWH, and 97.77% for getCallsRec, which
shows that even such simple queries provide very high re-
call. An exception here is the query getRetTypesWS with
recall 69.11%. However, we counted a false negative if the
query returned a more general type than the actual type of
the returned object, which, in all cases, was an interface.
Even returning a more general type provides far more in-
formation than the return type of the method (Object in
the case of getAdapter()) and, in fact, is sufficient for WPI
FSML because workbench parts usually request an adapter
implementing a certain interface.

7.2 Threats to validity
We discuss the limitations of our study in terms of threats

to the validity of the obtained results and describe measures
undertaken in order to minimize such threats. We distin-
guish between internal validity, in which the elements that
might compromise the design and analysis of the study are
discussed, from external validity, which relates to the extent
to which conclusions can be generalized [16].

Internal Validity. The main threat to internal validity
is related to the measurement procedures. The queries im-
plemented in the prototypes matched patterns in the code.
There are two situations in which errors in the queries’ im-
plementations may influence the results: i) a false negative
pattern is matched by the query and ii) a false positive pat-
tern is missed by the query. In the first case, the recall
appears higher than in reality and in the second case the
precision appears higher than in reality. A similar problem
can emerge in the determination of the Qf and Af values for
the newly proposed queries, which was performed by manual
code inspection. If patterns were missed, the results would
indicate precision and recall values greater than they really
are. Both threats were minimized by having two of the au-
thors independently collect and compare the data, and by
supporting the inspection of code and protype results with
two code query tools: JQuery [9] and the built-in Eclipse
Java Development Tools [10] search.

External Validity. Our study involves three input vari-
ables: frameworks, FSMLs, and applications. The way in
which instances were selected for these variables directly af-
fects the external validity of our results.

Frameworks and FSMLs. The construction of an FSML
involves selecting and modeling some concepts in the area of
interest. Consequently, the results are restricted not by the
frameworks and FSMLs themselves, but by the character-
istics of the chosen concepts. For example, highly dynamic
concepts of frameworks such as Java Swing prescribe the
construction of complex object structures, which are diffi-
cult to analyze statically.

Applications. The selection of representative applications
for each framework directly influences the results of our
study because the precision and recall values are highly de-
pendent on how the applications use the framework. In order

to obtain results that can be generalized, we chose not only
applications that were provided by the framework develop-
ers, but also other applications at random. For example, we
used example Applets and Struts applications provided with
the frameworks, and core eclipse plug-ins, but added other
applications acquired at random from the Internet. The
goal is to guarantee that our results are not biased by using
only applications that strictly follow the framework exam-
ples. Furthermore, our sample consists of applications that
directly use the framework. We consider the construction of
custom layers on top of a base framework equivalent to the
construction a new framework and therefore new definitions
of FSML concepts are necessary.

7.3 Empirical approach to query refinement
Our results suggest an empirical approach to code query

refinement, whereby the categorization of false negatives and
false positives of a given query allows extending the query
such that the false positives from a given category are al-
ways missed and false negatives are retrieved. A good ex-
ample from our study is the query isArgPrvFieldAO. This
is in contrast to the general approach, in which the pur-
suit of soundness and completeness requires using very ex-
pensive analyses. The guidelines for developers (e.g., the
monkey see, monkey do rule) and recent research on de-
sign fragments [11] suggest that the developers commonly
copy existing examples and utilize common programming
micropatterns when using frameworks. Therefore, empirical
query refinement could result in efficient code queries that
provide high precision and recall when applied to real code.

8. RELATED AND FUTURE WORK
In this section we describe related works grouped in the

following categories.
General Design & Architecture Recovery. The main

difference between the general design and architecture re-
covery tools and a framework-specific approach is that the
latter heavily relies on the framework knowledge, which on
the one hand allows the retrieval of meaningful and pre-
cise models, but on the other hand requires designing an
FSML for each framework. A detailed comparison between
framework-specific and general-purpose design retrieval re-
mains future work.

Generic code query tools. Generic code query tools
for Java, such as JQuery [9], JTL [7], and CodeQuest [12]
cannot query for the kinds of behavioral patterns required
for the retrieval of framework-specific models. In particular,
the dynamic pattern types presented in Table 1 cannot be
retrieved. Another difference is that generic code query tools
usually build a complete database of facts about the queried
program, which, as shown in Section 2 is not necessary. The
only types of patterns that such tools could provide with-
out incurring a prohibitive increase in the size of the fact
database are patterns matched by the queries getArgValLC,
getAssgnNull, and getAssgnNew.

Static analysis frameworks. Static analyzers usually
build a complete control flow graph of the application, which
is a prerequisite for many other static analyses. As discussed
in Section 2, the analysis must be performed on-demand
and in the presence of incomplete programs. The following
two works deal with the static analysis of framework-based
code. Component Level Dataflow Analysis [19] is an ap-
proach to analysis of a program in the presence of large
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libraries, where only the program is analyzed and the anal-
ysis relies on the availability of summary information about
the library/framework. Zhang et al. propose an algorithm
for computing a call graph of an application in the presence
of callback methods [21].

Defining framework-provided concepts. We are not
aware of any systematic approach to defining framework-
provided concepts for the purpose of reverse engineering
other than the FSML approach [3]. Also, we are not aware of
any work proposing the specification of the correspondence
between model elements and code patterns using pointcuts.

Aspect Weaving Optimization. An active research
topic in the aspect-oriented programming community is the
optimization of the run-time performance of aspect-oriented
programs by removing unnecessary run-time checks, e.g., [6].
Such optimization techniques perform static analysis to de-
termine whether certain shadows will always or never be
executed when the given pointcut matches. Unfortunately,
such analyses tend to require the complete control flow graph
of the application and thus are not applicable in the context
of FSMLs for the reasons discussed in Section 2. Therefore,
while advances in weaving optimization could be leveraged
by FSMLs, currently the only feasible solution is to use ap-
proximations in the form of code queries. We do, however,
believe, that the techniques used in dynamic pointcut weav-
ing optimization can be leveraged to design code queries that
provide the highest possible precision and recall.

9. CONCLUSION
Framework-specific models describe how framework-pro-

vided concepts are implemented in the application code.
Automatic location of concept instances requires matching
structural and behavioral patterns in the code, which can be
realized by code queries. In this paper we evaluated the pre-
cision and recall of code queries that can be used for model
retrieval.

We identified the types of structural and behavioral pat-
terns that features of the three example FSMLs correspond
to and provided a more precise definition of behavioral pat-
terns using meta pointcuts. We showed how a priori knowl-
edge about a framework can be leveraged for the retrieval of
behavioral patterns, such as callsTo, before, argSameObj.
Also, we provided empirical evidence that by leveraging frame-
work knowledge and concentrating on the framework bound-
ary simple static analyses are sufficient for retrieving frame-
work-specific models, without requiring whole-application
analysis. The average recall for all simple queries for behav-
ioral patterns is 88.06% and the precision is 99.93%. We pro-
posed refined versions of the code queries that would achieve
100% precision and recall when analyzing the example appli-
cations. Finally, the discussed queries suggest improvements
to general-purpose code query tools to make them more us-
able for the retrieval of framework-specific models.
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