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ABSTRACT

Monitoring the satisfaction of software requirements and di-
agnosing what went wrong in case of failure is a hard prob-
lem that has received little attention in the Software and Re-
quirement Engineering literature. To address this problem,
we propose a framework adapted from artificial intelligence
theories of action and diagnosis. Specifically, the framework
monitors the satisfaction of software requirements and gen-
erates log data at a level of granularity that can be tuned
adaptively at runtime depending on monitored feedback.
When errors are found, the framework diagnoses the denial
of the requirements and identifies problematic components.
To support diagnostic reasoning, we transform the diagnos-
tic problem into a propositional satisfiability (SAT) problem
that can be solved by existing SAT solvers. We preprocess
log data into a compact propositional encoding that better
scales with problem size. The proposed theoretical frame-
work has been implemented as a diagnosing component that
will return sound and complete diagnoses accounting for ob-
served aberrant system behaviors. Our solution is illustrated
with two medium-sized publicly available case studies: a
Web-based email client and an ATM simulation. Our ex-
perimental results demonstrate the feasibility of scaling our
approach to medium-size software systems.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Diagnostics, Monitors

General Terms
Design, Theory, Verification

1. INTRODUCTION

Monitoring software for requirements compliance is nec-
essary for any operational system. Yet, design of runtime
monitoring and diagnostic components has received little at-
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tention in the Requirement Engineering (hereafter RE) liter-
ature. The aim of our research is precisely this: to develop a
tool-supported methodology for designing and running mon-
itoring and diagnostic components.

In this paper, we propose an adaptive monitoring frame-
work, complemented by a SAT-based diagnostic framework
adapted from artificial intelligence (AI) theories of action
and diagnosis. Software requirements are represented as goal
models that can be either reverse engineered from source
code using techniques we presented in [23], or provided by
requirements analysts. In addition, we assume that trace-
ability links are provided, linking source code and require-
ments in both directions.

The monitoring component monitors requirements and
generates log data at different levels of granularity that can
be tuned adaptively at runtime depending on monitored
feedback. A diagnosing component analyzes generated log
data and identifies errors corresponding to aberrant system
behaviors that lead to the violation of system requirements.
When errors are found, the diagnostic component identifies
root causes.

Propositional satisfiability (SAT) is the problem of deter-
mining whether a propositional formula admits any truth as-
signments to its literals that render it true. Recent advances
in SAT solver technology have encouraged SAT-based appli-
cations to software engineering problems. We transform the
problem of diagnosing software systems into a SAT problem
by encoding goal model relations and log data into propo-
sitional formulae that can be used by an off-the-shelf SAT
solver to conjecture possible diagnoses.

The diagnostic component is implemented with two diag-
nosing algorithms. The first algorithm is sound and com-
plete with respect to the diagnoses it generates. Each SAT
truth assignment corresponds to a correct diagnosis that rep-
resent requirements satisfaction and denial, If requirements
are denied, problematic components are identified. We find
a complete set of such diagnoses by having the SAT solver
return all possible truth assignments. The second algorithm
improves efficiency when incomplete log data is present by
making the SAT solver only return a subset of possible truth
assignments. This second algorithm is sound and complete
with respect to participating diagnostic component sets. We
preprocess the log data to create a compact propositional en-
coding that scales with problem size, making our approach
more amenable to industrial-sized applications.

We illustrate and evaluate our framework on two medium-
sized publicly available case studies: a Web-based email



client (Squirrel Mail) [2], and an ATM simulation [1]. These
case studies demonstrate the feasibility of scaling our ap-
proach to medium-size software systems with medium-size
requirement models.

2. PRELIMINARIES
2.1 Goal Models

Requirements Engineering (RE) is a branch of software
engineering that deals with elicitation and analysis of sys-
tem requirements. In recent years, goal models have been
used in RE to model and analyze stakeholder objectives [20].
Functional and non-functional requirements are represented
as hard goals and soft goals respectively [14]. A goal model
is a graph structure including AND- and OR-decompositions
of goals into subgoals, as well as means-ends links that relate
leaf level goals to tasks (“actions”) that can be performed to
fulfill them. We assume that traceability links are main-
tained between system source code and goals/tasks. At the
source code level, tasks are implemented by simple proce-
dures or composite components that are treated as black
boxes for the purposes of monitoring and diagnosis. This
allows us to model a software system at different levels of
abstraction. If goal G is AND/OR-decomposed into sub-
goals G1, ..., Gy, then all/at least one of the subgoals must
be satisfied for G to be satisfied.

Following [7], apart from decomposition links, hard goals
can be related to each other through various contribution

links: ++S, — =S, ++D, — — D, ++, ——. Given two
goals G and Ga, the link Gi 5, Gz (respectively Gi

N G2) means that if Gy is satisfied, then G is satisfied

(respectively denied), but if Gy is denied, we cannot infer
denial (or respectively satisfaction) of Gz. The meaning of
links + 4 D and — — D are dual w.r.t. to ++ S5 and — — S
respectively by inverting satisfiability and deniability. Links
++, and —— are shorthand for the ++S5, ++ D, and —— S5,
— — D relationships respectively. The class of goal models
used in our work has been formalized in [7], where sound
and complete algorithms are provided for inferring whether
a set of root-level goals can be satisfied.

As an extension, we associate goals and tasks with precon-
ditions and postconditions (hereafter effects to be consistent
with AI terminology), and monitoring switches. Precondi-
tions and effects are propositional formulae in Conjunctive
Normal Form (CNF) that must be true before and after
(respectively) a goal is satisfied or a task is successfully ex-
ecuted. Monitoring switches can be switched on/off to indi-
cate whether the corresponding goal/task is to be monitored.

2.2 SAT Solvers

The propositional satisfiability (SAT) problem is concerned
with determining whether there exists a truth assignment u
to variables of a propositional formula ® that makes the for-
mula true. If such a truth assignment exists, the formula is
said to be satisfiable. A SAT solver is any procedure that
determines the satisfiability of a propositional formula.

The earliest and most prominent SAT algorithm is DPLL
(Davis-Putnam-Logemann-Loveland) [3], which uses back-
tracking search. Even though the SAT problem is inher-
ently intractable, there have been many improvements to
SAT algorithms in recent years. Chaff [13], BerkMin [8] and
Siege [18] are among the fastest SAT solvers available today.
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For our work, we use SAT4J [11], an efficient SAT solver that
inherits a number of features from Chaff.

3. OUR FRAMEWORK

Figure 1 provides an overview of our proposed framework.
The input to the framework is the monitored program’s
source code, and its corresponding goal model representing
the system’s requirements. The goal model can be either
reverse engineered from the program using techniques we
presented in [23] or it can be modeled by requirement ana-
lysts. Requirement analysts annotate the goal model with
monitoring switches, preconditions and effects for goals and
tasks. When these switches are enabled, the satisfaction of
the corresponding goals and tasks is monitored at run time.
From the input goal model, the parser component obtains
goal/task relationships, goals and tasks to be monitored, and
their preconditions and effects. The parser then passes this
data to the instrumentation and SAT encoder components
in the monitoring and diagnostic layers respectively.

In the monitoring layer, the instrumentation component
inserts software probes into the monitored program at the
appropriate places. At run time, the instrumented program
generates log data that contains program execution traces
and values of preconditions and effects for monitored goals
and tasks. Offline, in the diagnostic layer, the SAT encoder
component transforms the goal model and log data into a
propositional formula in CNF which is satisfied if and only
if there is a diagnosis. A symbol table records the mapping
between propositional literals and diagnosis instances. The
SAT solver finds one possible satisfying assignment, trans-
lated by the SAT decoder into a possible diagnosis. The
SAT solver can be repeatedly invoked to find all truth as-
signments that correspond to all possible diagnoses and di-
agnostic component sets.

In our framework a diagnosis specifies for each goal and
task, whether it is fully denied or not. If a denial of sys-
tem requirements is found, it is traced back to the source
code to identify the problematic components. The diagnosis
analyzer analyzes the returned diagnoses, and may increase
monitoring granularity by switching on monitoring switches
for subgoals of a denied parent goal. When this is done,
subsequent executions of the instrumented program gener-
ate more complete log data. More complete log data means
fewer and more precise diagnoses, due to a larger SAT search
space with added constraints.

If no diagnoses are found, the system is running correctly.
Monitoring granularity may also be decreased to monitor
fewer (higher level) goals in order to reduce monitoring over-
head. The steps described above constitute one execution
session and may be repeated.

3.1 A Running Example

We use the SquirrelMail [2] case study as a running exam-
ple throughout this paper to illustrate how our framework
works. SquirrelMail is an open source email application that
consists of 69711 LOC written in PHP. Figure 2 presents a
simple, high-level goal graph for SquirrelMail with 4 goals
and 7 tasks, shown in ovals and hexagons, respectively. The
root goal gl is AND decomposed into task al, goal g2, and
task a7. ¢2 is OR decomposed into task a6 if the email
IMAP server is not found and goal g3 if otherwise. g3 is de-
composed into task a2, and goal g4, which is further AND
decomposed into three tasks: a3, a4, and a5.
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Figure 2: Squirrel Mail Goal Model

3.2 Adaptive Goal Monitoring

Satisfaction of software system requirements can be mon-
itored at different levels of granularity. The finest level of
monitoring granularity is at the functional level where all
leaf level tasks are monitored. In this case, complete log
data is generated, and a single precise diagnosis can be in-
ferred. Of course, the disadvantage of complete monitoring
is high monitoring overhead and the possible degradation
of system performance. Coarser levels of granularity only
monitor higher-level goals in a goal model. In this case, less
complete log data is generated, leading to less precise diag-
noses. Clearly, the advantage of coarse-grain monitoring is
reduced monitoring overhead and complexity.

Monitored goals and tasks need to be associated with pre-
conditions and effects whose truth values are monitored and
are analyzed during diagnostic reasoning. Preconditions and
effects may also be specified for goals and tasks that are not
monitored to allow for more precise diagnoses by constrain-
ing the search space for analysis. Errors may be introduced
if specified preconditions and effects for goals and tasks do
not completely or correctly capture the software system’s
dynamics. Detecting or dealing with discrepancies between
a system’s implementation and its goal model is beyond the
scope of this paper, and we assume that both the goal model
and its associated preconditions and effects are correct and
complete.

Each task occurrence is associated with a specific logical
timestep t. We introduce predicate occq(as, t) to specify
occurrences of tasks a; at timestep t. We say a goal has
occurred in an execution session s if and only if all the tasks
in its decomposition have occurred in s, and we associate
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Table 1: Squirrel Mail Annotated Goal Model

Goal/ | Monitor Precondition Effect
Task switch
al on URL entered correct form
a2 on —wrongIMAPA correct key
correct form
a3 off correct key form shown
ad off form shown form entered
ab off form entered webmail started
ab on wronglMAP error reported
a7 on webmail started email sent
gl off URL entered email sent V
error reported
g2 off correct form Vv webmail started
wronglMAP V error reported
g3 off correct form A webmail started
—wrongIMAP
g4 on correct key webmail started

two timesteps, t1 and 2, to goal occurrences representing
the timesteps of the first and the last executed task in the
goal’s decomposition in execution session s. We introduce
predicate occg(gs, t1, t2) to specify occurrences of goals g;
that start and end at timesteps t1 and t2 respectively.

The monitored system’s runtime behavior is traced and
recorded as log data consisting of truth values of observed
domain literals (specified in goal/task preconditions and ef-
fects) and the occurrences of tasks, each associated with a
specific timestep t. A log is made of a sequence of log in-
stances, defined as follows:

DEFINITION 1. (Log instance) A log instance is either
the truth value of an observed literal or the occurrence of a
task, at a specific timestep t.

3.2.1 SquirrelMail Example Log Data

Table 1 lists the details of each goal/task in the Squirrel-
Mail goal model (Figure 2) with its monitoring switch status
(column 2), and associated precondition and effect (columns
3 and 4). The requirement analyst chooses which goals/tasks
are to be monitored at runtime and specifies for the goals
and tasks their associated preconditions and effects. In this
example, the satisfaction of goal g4, and tasks al, a2, a6,
and a7 are monitored. The following is an example log data
consisting of truth values of monitored goals/tasks’ precon-
ditions and effects, and occurrences of tasks:



URL entered(1), occq(al, 2), correct form(3),
—wrongIMAP(4), occq(a2, 5), correct key(6),
occq (a3, 7T), occe(ad, 8), occq(ad, 9), —webmail
started(10), occq (a7, 11), = email sent(12).

3.3 SAT-Based Goal Diagnosing

Executions of tasks in some order form a plan which if
executed successfully leads to satisfaction of the root goal.
We associate a unique execution session ID, s, with each
session of a plan executed in fulfillment of the root goal.
Goal satisfaction or denial may vary from one session to
another. The logical timestep ¢ is incremented by 1 each
time a new batch of monitored data arrives and is reset to
1 when a new session starts.

We introduce a distinct predicate F'D to express full evi-
dence of goal and task denial at a certain timestep or during
a specific session. F'D predicates take two parameters: the
first parameter is either a goal or a task specified in the goal
model and the second parameter is either a timestep or a
session id.

3.3.1 Axiomatization of Deniability

We formulate the denial of goals and tasks in terms of the
truth values of the predicates representing their occurrences,
preconditions and effects. Intuitively, if a tasks’s precondi-
tion is true and the task occurred at timestep t, and if its
effect holds at the subsequent timestep ¢ + 1, then the task
is not denied at timestep ¢t + 1. T'wo scenarios describe task
denial: (1)* if the task’s precondition is false at timestep ¢,
but the task still occurred at the same timestep ¢ , or (2) if
the task occurred at timestep ¢, but its effect is false at the
subsequent timestep ¢+ 1. Axiom (1) captures both of these
cases. All propositional literals are grounded to domain in-
stances.

AxioM 1. (Task Denial Aziom.) A task a with precon-
dition p and effect q is denied at timestep t + 1 if and only
if the task occurred at the previous timestep t, and either p
was false at t, or q is false at t + 1:

FD(a,t+ 1) < occqa(a,t) A (=p(t) V—q(t+1)) (1)

A goal occurrence is indexed by two timestep arguments
denoting the timesteps of the first and the last executed
tasks under the goal’s decomposition. As with a task, the
goal’s precondition and effect need to be true before and
after the goal’s occurrence for a goal to be satisfied.

AxioM 2. (Goal Denial Axziom) A goal g with precon-
dition p and effect q is denied at timestep t2 + 1 if and only
if the goal occurrence finished at a previous timestep t2, and
either p was false when goal occurrence started att1 (t1 < t2)
or q is false after goal occurrence finished at t2 + 1.

FD(g, to 4+ 1) — 9
0ceq (g b1, 1) A (wp(t) V ~qlts + D) A (1 < 1) )

If there is only one task under g’s decomposition, the goal
occurrence starts and ends at the same timestep as the task
occurrence timestep. In this case, t1=t2. Denial of goals and
tasks in the goal model are traced back to the monitored
system’s sourcecode to identify buggy implementations and
problematic components.

'In many axiomatizations we assume that occq(a,t) — p(t).

AxioM 3. (Task and Goal Session Denial Axioms)
A task, a, or a goal, g, is denied during an execution session,
s, if @ or g is denied at some timestep, t, within s.

FD(a,t) — FD(a, s) (3)
FD(g,t) — FD(g,s) (4)

As will become clear in the following sections, inferring the
truth values of FD(a,s) and F'D(g,s) on all tasks and goals
is useful when we propagate their denial labels to the rest
of the goal graph.

Returning to the SquirrelMail case study, the following
denial axioms are generated for task a7, send message, goal
g4, show compose message, and for timesteps 1 and 2:

FD(a7,2) < occqa(aT,1) A
(—webmail started(1) V —email sent(2))
FD(g4,2) < occg(g4,1,1) A
(—correct key(1) V ~webmail started(2))
FD(a7,2) — FD(a7,s)
FD(g4,2) — FD(g¢4,s)

3.3.2  Explanation Closure Axioms

Propositional literals whose values may vary from time
step to time step are called fluents. If a fluent f is not men-
tioned in the effect of a task that is executed at timestep ¢,
we would not know the value of f after task execution at
timestep t+ 1. In this case, f can take on an arbitrary truth
value. To fully capture the dynamics of a changing knowl-
edge base (KB), it is also necessary to know what fluents are
unaffected by performing a task. Formulas that specify un-
affected fluents retain the same values are often called frame
axioms and they present a serious problem because it will
be necessary to reason with a large number of frame axioms
for all the fluents, tasks, and timesteps in the KB.

We adopt Explanation Closure Axioms [16] to address the
frame problem. We make a completeness assumption on
tasks’ and goals’ effects: we assume that the effects specified
for goals and tasks characterize all conditions under which
a goal or a task can change the value of a fluent. Therefore,
if the value of a fluent f changes at timestep ¢, then one of
the tasks/goals that has f in its effect must have occurred
at a previous timestep ¢t — 1 and is not denied at .

Explanation Closure Axioms are described by axioms (5)
and (6) which state that for any fluent f that is in a positive
(or negative) effect of tasks a1, ..., an, and goals g1, ..., Gm,
if f does not hold (or does hold) at timestep ¢, but holds (or
does not hold respectively) at step t+1, then one of the tasks
a; or one of the goals g;, must have occurred by timestep ¢
and is not denied at the subsequent timestep ¢ + 1.

If f is in a positive effect of tasks ai...a, and goals
gi...9m,

F(E) A FE 1)
s(occq(ai, t) N =FD(as, t+ 1))V (5)

\/j(OCCg(gj7t17t) A _'FD(gj,t + 1) A (tl < t))

If f is in a negative effect of tasks ai...a, and goals
gi...9m,

() A~F(E+1) o
V,(occq(ai, t) AN =FD(as, t+ 1))V (6)
V;(oceg (g5, t1,t) A=FD(gj, t+ 1) A (t1 < 1))



In the SquirrelMail case study, according to Table 1, only
the task a7 has the fluent email sent in its positive effect.
The following explanation closure axiom is generated for the
fluent email sent, for timesteps 1 and 2:

—email sent(1) A email sent(2) < occq(a7,1) N—FD(a7,2)

3.3.3 Axiomatization of Label Propagations

Axioms (7) and (8) describe the forward and backward
propagations of the goals’/tasks’ satisfaction/denial labels
in the goal model. If a goal g is AND (or OR) decomposed
into subgoals g1 ... gn, and tasks a; ... a.m then there is full
evidence that g is denied in a certain session, s, if and only
if at least one (or all) of the subgoals or tasks in its decom-

position is (or are) denied in that session.

AND
(g1.-.gn,a1...am) — ¢:

FD(g,s) < (V; FD(gi,8)) V (V; FD(a;,5))
OR

(91...gn,a1...am) — g:
FD(g,s) < (A, FD(gi,5)) A (\; FD(aj,5))  (8)

Axioms (9) to (12) describe the contribution links between
goals. With the introduction of these links, the goal graph
may become cyclic and conflicts may arise. We say a conflict
holds if we have both F'D(g,s) and =FD(g,s) in one exe-
cution session s. Since it does not make sense, for diagnosis
purposes, to have a goal being both denied and satisfied at
the same time. Conflict tolerance in [19] is not supported
within our diagnosing framework.

(7)

g1 T2 go 1 ~FD(g1,5) — ~FD(g2, 5) €)
g1 —= g2 : ~FD(g1,5) — FD(ga,5) (10)
g1 5 g2 FD(g1,5) — FD(g, 5) (11)
g1 = g2 : FD(g1,5) — ~FD(ga, 5) (12)

The following propagation axiom is generated for the goal
g4 in the SquirrelMail example, stating that g4 is denied if
and only if at least one of its subtasks a3, a4, or a5 is denied:

FD(g4,s) < FD(a3,s)V FD(a4,s)V FD(a5, s)
3.3.4 Basic Formulation for SAT

We reduce the problem of searching for diagnoses to that
of the satisfiability of a propositional formula ®. ® is written
in the form:

P = q:'goal A q)deniability A (I)LOG[/\(I)domain constraints] (13)

The first component ®g.a1 is the conjunction of relation ax-
ioms (7) to (12) which encode goal relations and forward
and backward propagation axioms. The second component
D geniability 1S the conjunction of axioms (1) to (6) that encode
denials of tasks and goals and explanation closure axioms.
The third component ®r,0c represents log data generated
by monitors as specified in Definition 1. The last compo-
nent, which is optional, ®Pqomain constraints, encodes any do-
main constraints and relations that are not represented in
the goal graph.

3.3.5 Characterizing Diagnoses

DEFINITION 2. (Diagnosis) A diagnosis D for a soft-
ware system is a set of F'D and —FD predicates over all
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the goals and tasks in the goal graph, such that D U ® s
satisfiable.

THEOREM 1. D is a diagnosis for a software system if
and only if D U ® is satisfiable.

Theorem 1 establishes the soundness and completeness of
our approach. A proof of the theorem is provided in [21].
According to the theorem, the diagnostic component finds
a complete set of correct diagnoses defined in Definition
2, representing all the possible denied and satisfied goals
and tasks, that can account for aberrant system behaviors
recorded in the log file. The root cause of a goal denial is
the denial of one or more tasks associated with the goal or
its subgoals. Therefore, task level denial is the core or root
cause of a diagnosis given in Definition 2.

DEFINITION 3. (Core Diagnosis) A core diagnosis D
for a software system is a set of FD and —~FD predicates
over all the tasks in the goal graph such that D U ® is sat-
isfiable.

COROLLARY 1. QOur diagnostic approach finds all the core
diagnoses to the software system, as specified in Theorem 1.

When the software system is monitored at the functional
level, leaf level tasks are monitored and the most complete
log data is generated. A single core diagnosis may be inferred
containing denials of leaf level tasks. When the software sys-
tem is monitored at the requirement level, higher level goals
in the goal model are monitored and less complete log data
is generated. If the diagnostic component infers that a goal
is denied, it returns a complete set of core diagnoses rep-
resenting all the possible combinations of task denials for
leaf level tasks associated with the denied goal. Therefore,
in the worst-case, the number of core diagnoses is exponen-
tial to the size of the goal graph. To address this problem,
we introduce the concept of participating diagnostic compo-
nent set that contains individual task denial predicates that
participate in core diagnoses. Task denial predicates that
participate in the same participating diagnostic component
set represent tasks that fail together. Any combinations of
participating diagnostic component sets are possible core di-
agnoses. Therefore, instead of returning all core diagnoses
that represent all the possible combinations of task denials,
the diagnostic component returns all participating diagnostic
component sets and leaves out their combinations.

DEFINITION 4. (Participating Diagnostic Component
Set) A participating diagnostic component set P for a soft-
ware system is a set of F'D predicates over tasks such that
P U ® is satisfiable.

COROLLARY 2. Qur diagnostic approach finds all the par-
ticipating diagnostic component sets to the software system,
as specified in Theorem 1.

4. IMPLEMENTATION

This section discusses the four main algorithms of our
framework, namely two encoding algorithms (Algorithms 1
and 2) for encoding an annotated goal model into the propo-
sitional formula, ®, and two diagnostic algorithms (Algo-
rithms 3 and 4) for finding all core diagnoses and all par-
ticipating diagnostic component sets, respectively. The dif-



Algorithm 1 Encode & Without Log Preprocessing

Algorithm 2 Encode & With Log Preprocessing

encode_®_without_log_preprocessing (goal model) {
for each monitored task a
for each t; € [1, total timesteps] {
® = ® A encodeTaskDenialAziom(a, t;);
® = ® A encodeTaskSessionDenialAziom(a, t;); }
for each monitored goal g
for each ¢; € [1, total timesteps]
for each ¢; € [t;, total timesteps] {
® = & A encodeGoalDenialAziom(g, ts, t;);
® = @ A encodeGoalSessionDenialAziom(g, ti, t;); }
for each fluent f
for each ¢; € [1, total timesteps]
® = @ A encodeEzplanationClosureAziom(f, t;);
return @; }

ference between the two encoding algorithms, Algorithms 1
and 2, is based on whether the algorithm preprocesses the
log data when encoding the goal model into ®. Algorithm
1 does not preprocess log data and generates a complete set
of axioms for all the timesteps during one execution session.
The problem with this encoding algorithm is the exponential
increase in the size of ® with the size of a goal model. Algo-
rithm 2 addresses this problem by generating all necessary
axioms while keeping the growth of the size of ® polynomial
with respect to the size of the goal model. We present and
compare experimental results using these two algorithms in
Section 5.

For each monitored task a in the goal model, Algorithm 1
generates a task denial axiom, and a task session denial ax-
iom (axioms (1) and (3)) for all the timesteps during the
execution session. These axioms cover all the possible task
occurrence and denial timesteps. Similarly, for each moni-
tored goal g, goal denial axiom and goal session denial axiom
(axioms (2) and (4)) are generated for all possible combina-
tions of timesteps t; and ¢; (¢; < t;). These axioms cover all
possible goal occurrence and denial timesteps. In addition,
explanation closure axioms (axioms (5) and (6)) are gener-
ated for all fluents and all timesteps, to specify that after
each goal/task execution, truth values of unaffected fluents
remain the same from timestep to timestep. The SAT solver
input formula ® is a conjunction of all the generated axioms.
The size of ® grows exponentially with the size of the goal
model under Algorithm 1.

To address the scalability issue, for each monitored task a,
Algorithm 2 finds in the log three timesteps: tocc: a’s occur-
rence timestep during the execution session s, t,: latest ob-
servation timestep of a’s precondition before a’s execution,
and t4: the earliest observation timestep of a’s effect after
a’s execution. Then the algorithm generates task denial ax-
ioms and task session denial axioms using these recorded
timesteps. It is possible for a task to occur more than once
during an execution session. In this case, the algorithm re-
peats for each of a’s occurrences during the session. Simi-
larly, for each monitored goal g, the algorithm calculates the
start and the end timesteps of g’s occurrence, t1 and t2, from
the occurrence timesteps of the tasks under g’s decomposi-
tion. The algorithm generates goal denial axioms and goal
session denial axioms, using the goal’s occurrence, observed
precondition and effect timesteps. Therefore, Algorithm 2
generates goal/task denial axioms only for the timesteps at
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encode_®_with log preprocessing(goal model, log) {

for each monitored task a {

toce = task occurrence time during s

by = %, )1y clog {tp < focea }

ty = min 40 clog tq > tocey b

® = & A encodeTaskDenialAziom(a, tp, toce, tq)

® = & A encodeTaskDenialSessionAziom(a, tq) }
for each monitored goal g {

th = minocca(a,t)\occa (a,t)€log A aedescendents(g) {t}

ty = maXocca(a,t)|occa(a,t)€log A aedescendents(g)

by = max, ) elog e < 11}

tg =m0, clogita > t2}

® = ® A encodeGoalDenialAziom(g, tp, t1, t2, tq)

® = @ A encodeGoalSessionDentalAziom(g, tq) }
return ®; }

which the goals/tasks actually occur as recorded in the log.
As will be illustrated in Section 5, Algorithm 2 allows poly-
nomial growth in the size of ® with respect to the corre-
sponding goal model, and allows the diagnostic component
to scale to larger goal models.

Algorithm 3 Find All Core Diagnoses

find_all core_diagnoses() {

& = encode_P_with_log_preprocessing(goal model, log);

solver.solve(®);

while (® is satisfiable) {
i = SAT result;
//map SAT result to diagnostic instance
oneDiagnosis = decodeToDiagnosis(u)
//filter the diagnosis to contain only denials of tasks)
oneCoreDiagnosis = filter(oneDiagnosis)
numberDiagnoses++;
//add to ® the negation of part of u that encodes tasks
o= A (_'Mtasks);
solver.solve(®); }}

Algorithm 3 finds all possible core diagnoses accounting
for aberrant system behaviors recorded in the log. The al-
gorithm calls Algorithm 2 to encode formula ® using log
preprocessing. If ® is satisfiable, the algorithm decodes the
solver result p? into diagnostic instances that constitute a
diagnosis. The diagnosis is then filtered into a core diagno-
sis that contains only F'D predicates over tasks. To have
the SAT solver search only on predicate symbols that en-
code the denial of tasks, the part of u that corresponds to
the denials of tasks is then negated and added back to .
The solver is invoked again to solve ® A —p,, ... When
satisfied, a new p is returned and a new core diagnosis is
inferred. The procedure repeats until the formula becomes
unsatisfiable, by which time it has found all possible core
diagnoses that explain errors in the log file. Algorithm 3
finds a complete set of core diagnoses, which is worst-case
exponential in number to the goal graph size, and may not
scale to large goal models.

To address the scalability problem, Algorithm 4 returns
all participating diagnostic component sets defined in Def-

2Without loss of generality we treat the set as a conjunction
of its elements.



Algorithm 4 Find All Participating Diagnostic Component
sets
find_all participating diagnostic_component_sets() {
® = encode_P_with_log_preprocessing(goal model, log);
solver.solve(®);
while (® is satisfiable) {
= SAT result;
oneCoreDiagnosis = filter(decodeToDiagnosis(y))
for each denial predicate of unmonitored task,
FD(task;), in oneCoreDiagnosis {
oneDiagnosticSet =
FD(taski) A \; FD(montitored task;)
numberDiagnosticSets++; }
//add to the solver the negation of part of
//that corresponds to denials of unmonitored tasks

o= AN (_‘ Hunmonitored tasks);
solver.solve(®) ; }}

inition 4, instead of returning all core diagnoses. As with
Algorithm 3, Algorithm 4 encodes the goal graph into &,
and finds one core diagnosis to the system if ® is satisfiable.
Tasks can be denied in one of two ways, depending on if they
are monitored. If a task is monitored, the truth values of its
precondition and effect are known. Therefore, the task’s sat-
isfaction or denial is inferred through the task denial axiom
(axiom (1)). Algorithm 4 adds the conjunction of the denial
predicates for monitored tasks in the core diagnosis to the
participating diagnostic component set. If a task is not moni-
tored, its satisfaction or denial label can be propagated from
its parent goal through the propagation axioms (axiom (7)
and (8)). If a parent goal is denied, any combination of task
denials for tasks under the goal’s decomposition can account
for the denial of the goal. Algorithm 4 infers individual task
denials (i.e. participating diagnostic components) and leaves
out their combinations. Therefore, the algorithm generates
all participating diagnostic component sets by adding from
the core diagnosis: (1) each individual task denial predicate
for unmonitored tasks, and (2) the conjunction of task de-
nial predicates for monitored tasks. The algorithm adds to
® the negations of the part of u that corresponds to the
denial of unmonitored tasks. Hence, SAT solver searches
only on predicate symbols that encode the denial of unmon-
itored tasks, and returns all participating diagnostic compo-
nent sets. Under complete monitoring (i.e. task level moni-
toring), the two diagnosing algorithms conjecture the same
set of task denial predicates since Algorithm 3 returns one
core diagnosis under complete monitoring, which Algorithm
4 uses to parse into one participating diagnostic component
set.

S. EVALUATION OF OUR FRAMEWORK

We applied our framework to two medium-size public do-
main software systems to evaluate its correctness and per-
formance: SquirrelMail [2] and an ATM (Automated Teller
Machine) simulation [1]. We used SquirrelMail as a run-
ning example to illustrate how our framework works. We
then used the ATM simulation case study to show that our
solution can scale up to the goal model size and can be ap-
plied to industrial software applications with medium-sized
requirements. All experiments reported were performed on
a machine with a Pentium 4 CPU with 1 GB of RAM.
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5.1 The SquirrelMail Running Example

The SquirrelMail log data (Section 3.2.1) contains two er-
rors (mwebmail started(10), and occ, (a7, 11)): (1) the effect
of g4 (webmail started) was false, at timestep 10, after all
the tasks under g4’s decomposition (a3, a4, and a5) were ex-
ecuted at timesteps 7, 8, and 9 respectively, and (2) task a7,
send message occurred at timestep 11 when its precondition
webmail started was false before its occurrence, at timestep
10.

The encoding component preprocesses the log data as de-
scribed in Algorithm 2. The diagnostic component infers
that the goal g4 and the task a7 are denied during the ex-
ecution session s. Then it infers that at least one of g4’s
subtasks, a3, a4, a5, must have been denied to account for
the denial of g4. Following Algorithm 4, the following three
participating diagnostic component sets are returned:

Diagnostic Components Set 1: FD(a3); FD(a7)
Diagnostic Components Set 2: FD(a4); FD(a7)
Diagnostic Components Set 3: FD(a5); FD(a7)

5.2 Performance Evaluation with ATM

The ATM simulation case study is an illustration of OO
design used in a software development class at Gordon Col-
lege [1]. The application simulates an ATM performing
customers’ withdraw, deposit, transfer and balance inquiry
transactions. The source code contains 36 Java Classes with
5000 LOC, which we reverse engineered to its requirements
to obtain a goal model with 37 goals and 51 tasks. We show
its partial goal graph with 19 goals and 23 tasks in Figure 3.

We report on two sets of experiments in this section. The
first contains five experiments on the goal model shown in
Figure 3, with increasing monitoring granularity. The goal
graph is encoded in the SAT input formula & using the
log preprocessing algorithm (Algorithm 2). We demonstrate
and discuss the tradeoff between monitoring granularity and
diagnostic precision. The second set reports 20 experiments
on 20 progressively larger goal models that contain from 50
to 1000 goals and tasks. We obtain these larger goal models
by cloning the ATM goal graph to itself. Furthermore, we
performed this second set of experiments using both encod-
ing algorithms 1 and 2 to compare their efficiency on larger
goal graphs. In the both sets of experiments, the diagnostic
component follows Algorithm 4 to return all participating
diagnostic component sets for scalability.

The second set of experiments shows that our diagnostic
framework scales to the size of the goal model, when the
encoding is done with log file preprocessing (Algorithm 2),
and when the diagnostic component returns all participating
diagnostic component sets (Algorithm 4). As a result, our
approach can be applied to industrial software applications
with medium-sized requirement models.

Table 2 reports the results of the first set of experiments.
We injected an error into the implementation of task al?7,
update balance, with the goal of pinning down a single pre-
cise participating diagnostic component set that contains
FD(al7). Column 1 in Table 2 lists the number of mon-
itored goals/tasks in the goal graph. Column 2 lists the
number of participating diagnostic component sets returned
by the diagnostic component. Columns 3 and 4 give the total
numbers of literals and clauses in the propositional formula,
®, encoded for the SAT solver, using log preprocessing (Al-
gorithm 2). Column 6 gives the total time (in seconds) that
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Table 3: Scalability to Goal Model Size with Log
Preprocessing (Second Set of Experiments)

R Goal | Tsum | Tencode | Ldiagnose| #Lit | #Clauses
R ! : ﬂ Model | (s) | () | (s)
S: Vs lown .
g4: Read card cguslcriere; SlZe
o g — 50 0.453 | 0.047 0.406 81 202
Cas; G%.me g6: Ghoose —— 100 0.641 | 0.079 0.562 157 302
number number /o % transaction 150 0.829 0.141 0.688 233 582
a6 Get \, o g0 200 0.999 0.187 0.812 309 772
(ransacton 98 Perform 516 Perorm™y 517 Perorm coreenre 250 1414 | 0.219 0.922 | 385 962
o R A depost transfer A inquiry 300 1.250 | 0.266 0.984 461 1152
é\-a&ca" 350 1.390 | 0.343 1.047 537 1342
K And ‘d A, Ang 400 1.453 | 0.375 1.078 613 1532
S, o (41 Cometes v 150 | 1503 | 0437 | 1.156 | 689 1722
T vty check R T 500 1.766 | 0.500 1.266 765 1912
e T G S . SEN, 550 | 1.906 | 0578 | 1.328 | 841 | 2102
d/ié@ > Dispense = 600 | 2.094 | 0.656 | 1.438 | 917 2202
iy s he,  (@EATMGedR)  figTUpdatd) [ 20:Print 650 2.266 | 0.797 1.469 993 2482
g13: Check a13:Chéck ala: validity sh in AT receipt

vauatacooum Check )~ . 700 2547 | 0.922 1.625 | 1069 2672
S o : . - 750 2.657 | 1.032 1625 | 1145 2362
e (i
850 3.093 | 1.281 1.812 | 1297 3242
) . 900 3.251 | 1.360 1891 | 1373 3432
Figure 3: Partial ATM goal model 950 3.562 | 1.562 2.000 | 1449 3662
1000 | 3.750 | 1.672 2.078 | 1525 3812

Table 2: Tradeoff Between Monitoring Overhead
and Diagnostic Precision (First Set of Experiments)
#Mon | #Diag | #Lit | #Clauses | Tavg(s) | Tsum(s)

1 20 62 62 0.051 1.032
3 15 67 72 0.058 0.876
6 11 72 82 0.071 0.781
8 4 76 92 0.132 0.531
11 1 79 107 0.392 0.392

the diagnostic component took in finding all participating di-
agnostic component sets. Tsyum is the sum of the time taken
to encode the goal graph into ® (Tencode ), and the time taken
to find all diagnostic component sets, calculated by multi-
plying the time taken to find one diagnostic component set
(T4iagnose) by the total number of returned diagnostic com-
ponent sets (#Diag Set) (Equation 14). Tyiagnese includes
the time taken by the SAT solver to solve the propositional
formula ® (Tsoive), and the time taken to decode the SAT
result into one diagnostic component set (Tueccode) (Equa-
tion 15). Column 5 lists the average time (T4vg) the solver
took to find one participating diagnostic set (in seconds),
calculated by diving Tsym by #Diag Set (Equation 16)

Tsu'm = Tencode + Tdiugnose X (#Dlag S@t) (14)
Tdiagnose = Tsotve + Tdecode (15)
Tovg = Tsum/(#Diag Set) (16)

In the first experiment (row 1 in Table 2), we monitored
only the root goal g1 (highest level of monitoring granular-
ity). The diagnostic component inferred that g1 was denied
and at least one of the executed tasks under g1’s decompo-
sition must have been denied to account for the denial of
gl. A total of 20 participating diagnostic component sets
were returned (column 2). The diagnostic framework took
1.032 seconds to find all diagnostic component sets, which
averages to 0.051 second per diagnosis.

In experiments 2 to 5 (rows 2 to 5 in Table 2), the num-
ber of goals and tasks that were monitored increased from 3
to 11. With increased monitoring overhead and more com-
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plete log data, diagnostic precision improved (fewer diag-
nostic component sets were returned). Numbers of gener-
ated literals and clauses increased with increasing monitor-
ing granularity, with the average time taken to find a sin-
gle participating diagnostic component set increasing from
0.058 to 0.392 seconds. It’s interesting to note that, even
with this increase, the total amount of time the solver took
to find all participating diagnostic component sets decreased
from 1.032 to 0.392 seconds. This happened because the to-
tal number of core diagnoses decreased from 20 to 1.

This first set of experiments showed that the number of
participating diagnostic component sets returned is inversely
proportional to monitoring granularity. When monitoring
granularity increases, monitoring overhead, SAT search space,
and average time needed to find a single participating diag-
nostic component set all increase. The benefit of monitoring
at a high monitoring granularity is that we are able to infer
fewer diagnostic component sets identifying a smaller set of
possible faulty components. It is also noteworthy that the
total amount of time taken to find all diagnostic component
sets may not increase despite the fact that it takes longer to
find one diagnostic component set. The reverse is true when
monitoring granularity decreases: we have less monitoring
and diagnostic overhead, but the number of participating
diagnostic component sets increases if the system is behav-
ing abnormally. However, if the system is running correctly
and no requirements are denied, no diagnostic component
set will be returned, so minimal monitoring is advisable.

Table 3 reports the results of the second set of experi-
ments, performed with the log file preprocessing algorithm
(Algorithm 2). We experimented on 20 progressively larger
goal models containing from 50 to 1000 goals and tasks in
order to evaluate the scalability of the diagnostic compo-
nent. We obtained these larger goal graphs by cloning the
ATM goal graph (Figure 3) to itself. All the experiments are
performed with complete (task level) monitoring, therefore,
one diagnostic component set is returned for each experi-
ment. Column 1 in Table 3 lists the number of goals/tasks
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in the goal model. Column 3, Tepcode, lists the time taken
(in seconds) to encode the goal model into the SAT propo-
sitional formula ® with log file preprocessing. Column 4,
Tdiagnose lists the time taken by the SAT solver to solve ®
and the time taken to decode the SAT result into a diagnos-
tic component set. Column 2, T, calculated by adding
Tencode and Tgiagnose, represents the total time taken (in
seconds) for finding the diagnostic component set. The to-
tal numbers of literals and clauses in ® are listed in Columns
5 and 6.

Figure 4 depicts the relationship between the total time
taken for diagnostic reasoning (the y-axis - the values in
columns 2, 3, and 4 of Table 3) and the goal model size (the
x-axis - the values of column 1 of Table 3). The three curves
in Figure 4 shows that the diagnostic component scales to
the size of the goal model when following algorithms 2 and
4, and our approach can be applied to industrial software
applications with medium-sized requirement graphs.

To compare the efficiency between the two encoding Algo-
rithms 1 and 2, we performed this second set of experiments
using also the Algorithm 1, encoding without log file pre-
processing. Figure 5 depicts the relationships between the
total time taken (in seconds) for encoding and diagnostic
reasoning and the goal model size using the two encoding
algorithms. As discussed in Section 4, encoding without log
preprocessing gives exponential growth in the size of ¢ with
respect to the size of the goal model; an “out of memory”
error was returned with experiments on goal models contain-
ing more than 400 goals/tasks. In contrast, the experiments
using encoding with log file preprocessing scaled well to the
goal model size. These experimental results are consistent
with our claim that our diagnostic framework scales to the
size of the goal models with log file preprocessing, and when
all participating diagnostic component sets (instead of all di-
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agnoses) are conjectured. As a result, we contend that our
framework can be applied to industrial software applications
with medium-sized goal graphs.

6. RELATED WORK

6.1 Requirements Monitoring Systems

Requirement monitoring aims to track a system’s run-
time behavior so as to detect deviations from its require-
ment specification. Fickas’ and Feather’s work [5, 6] presents
a run-time technique for monitoring requirements satisfac-
tion. This technique identifies requirements, assumptions
and remedies. If an assumption is violated, the associated
requirement is denied, and the associated remedies are exe-
cuted. The approach uses Formal Language for Expressing
Assumptions (FLEA) to monitor and alert the user of any
requirement violations at runtime. The main difference be-
tween our work and FLEA is that their proposal focuses on
monitoring for changes in the domain, rather than malfunc-
tions of the system. Moreover, there is no need for diag-
nostic reasoning in FLEA because the framework predefines
requirement/assumption/remedy tuples.

Robinson has also presented a requirement monitoring
framework, ReqMon in [17]. If an observed event is a satis-
faction (or violation) event, satisfaction (or denial) status is
updated for the requirement. The main difference between
our research and Robinson’s is that in ReqMon diagnostic
formulae are generated manually using obstacle analysis [10],
whereas in our work we make assumptions about what can
fail and as a result, we can automatically infer diagnoses
given a model of system requirements and log data.

More recently, Winbladh et al. [22] presented a goal-driven
specification based testing prototype that aims to find mis-
matches between actual and expected system behaviors. To
accomplish this, their monitoring component monitors soft-
ware systems at the finest (i.e. leaf) level of monitoring
granularity. The satisfaction of higher-level goals is inferred
from the satisfaction of their leaf level functional subgoals.
As a consequence, Winbladh’s proposal may not scale to in-
dustrial sized applications. Our proposed monitoring com-
ponent is able to monitor requirement satisfaction at differ-
ent levels of granularity, which can be tuned dynamically as
required.

None of the research discussed above [5, 6, 22] presented
framework performance evaluations or discussed scalability
issues. It is therefore difficult to compare our respective
approaches in terms of performance and scalability.

6.2 Al Theories of Diagnosis

In this work, we have adopted theories of diagnosis from
Al [15, 4, 12, 9]. Early AI research on diagnosis focused on
static systems, determining which components of the sys-
tem were behaving normally and which were behaving ab-
normally. Two widely accepted Al definitions of diagnosis
are consistency-based diagnosis [15, 4], and abductive expla-
nation [4].

Diagnosing dynamic systems has received more attention
recently. Mecllraith added a theory of action to traditional
AT model-based diagnosis [15, 4] and proposed ezplanatory
diagnosis [12]. Explanatory diagnosis conjectures a sequence
of actions that lead to the system’s aberrant behavior. Mcll-
raith showed that conjecturing an explanatory diagnosis is
analogous to Al planning. Iwan [9] further extended McIl-



raith’s work and proposed history based explanatory diagno-
sis (in which the basic action theory was extended to take
into account the possibility that some actions may not oc-
cur when they should, or occurred but did not achieve their
intended effects).

We extend Mcllraith’s and Iwan’s work in several impor-
tant ways. The distinguishing feature of our approach is its
ability to assess satisfaction of the system’s requirements,
goals as well as to diagnose atomic actions. This ability to
diagnose at different levels of granularity is afforded by the
richness and hierarchical structure of goal models. More-
over, the purpose of our diagnoses is to pin down which
tasks have failed, whereas in Mcllraith’s and Iwan’s work,
the purpose of diagnosis is to find a sequence of actions that
can account for aberrant system behaviors.

6.3 SAT-Based Goal Analysis

In [19] a SAT based qualitative framework is proposed for
finding assignments of satisfaction/denial labels for a set of
input goals that satisfies desired satisfaction/denial labels
for a set of target goals using two SAT solvers. We adopted
the goal model formalism used in [19], and extended it by
associating with goals and actions their monitoring switches,
preconditions, effects and occurrences. We concern ourselves
with goal and task denial using AI theories of diagnosis.
Goal/task denial is then propagated along the goal graph
using SAT solvers. In contrast, the focuses of [19] is on
satisfaction/denial label propagation only. In so far as sat-
isfiability and deniably are two sides of the same coin, our
work is in line with [19] with respect to label propagation.

7. CONCLUSION

This paper makes contributions to software requirement
monitoring and diagnosis, by adapting AI theories of ac-
tion and diagnosis. The aim of this research is to develop a
tool-supported methodology for designing and running mon-
itoring and diagnostic components in software-intensive sys-
tems. To the best of our knowledge, our proposed frame-
work is the first SAT-based solution to the diagnosis of the
software requirement satisfaction problem that is sound and
complete.

Our framework has been evaluated with two medium-sized
case studies, the results of which demonstrates the feasibility
of scaling our approach to medium-size goal models, and can
therefore be applied to industrial software applications. As
future work, we plan to further evaluate our framework on
large scale, industrial size applications. We also plan to
design tool support for automating additional tasks, such
as the generation of non-intrusive requirement monitors and
the dynamic tuning of monitoring granularity. Finally, we
plan to device monitors using statistical data to help identify
recurring patterns of system failures.
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