
Automating UI Generation by Model Composition

R. E. Kurt Stirewalt Spencer Rugaber

Computer Science and Engineering Dept. College of Computing

Michigan State University Georgia Institute of Technology
East Lansing, Michigan 48824 Atlanta, Georgia 30332-0280

Copyright 1998 IEEE. Published in the 13th Conference on Automated Soft-

ware Engineering (ASE’98) October 13-16, 1998 in Honolulu, Hawaii. Personal

use of this material is permitted. However, permission to reprint/republish this ma-

terial for advertising or promotional purposes or for creating new collective works

for resale or redistribution to servers or lists, or to reuse any copyrighted component

of this work in other works, must be obtained from the IEEE. Contact: Hoes Lane/

PO Box 1331/ Piscataway, NJ 08855-1331, USA.

Abstract
Automated user-interface generation environments have

been criticized for their failure to deliver rich and power-

ful interactive applications [18]. To specify more power-

ful systems, designers require multiple specialized model-

ing notations [12, 14]. The model-composition problem is

concerned with automatically deriving powerful, correct,

and efficient user interfaces from multiple models specified

in different notations. Solutions balance the advantages

of separating code generation into specialized code gen-

erators with deep, model-specific knowledge against the

correctness and efficiency obstacles that result from such

separation. We present a correct and efficient solution that

maximizes the advantage of separation through run-time

composition mechanisms.

1 Introduction
Building user interfaces (UIs) is time consuming and

costly. In systems with graphical UIs (GUIs), nearly 50%

of source code lines and development time could be at-

tributed to the UI [11]. GUIs are usually built from a fixed

set of modules composed in regular ways. Hence, GUI

construction is a natural target for automation. Tools have

been successful in supporting the presentation aspect of

GUI functionality, but they provide only limited support

for specifying behavior and the interaction of the UI with

the underlying application functionality. The model-based

approach to interactive system development addresses this

deficiency by decomposing UI design into the construction

of separate models, each of which is declaratively spec-

ified [5]. Once specified, automated tools integrate the

models and generate an efficient system from them. The

model-composition problemis the need to efficiently im-

plement and automatically integrate interactive software

from separate declarative models. This paper introduces

the model-composition problem and presents a solution.

A modelis a declarative specification of some single co-

herent aspect of a user interface, such as its appearance, or

how it interfaces and interacts with the underlying applica-

tion functionality. By focusing attention on a single aspect

of a user interface, a model can be expressed in a highly-

specialized notation. This property makes systems devel-

oped using the model-based approach easier to develop and

maintain than systems produced using other approaches.

The MASTERMIND project [5, 12] is concerned with the

automatic generation of user interfaces from three kinds

of models:Presentation modelsrepresent the appearance

of user interfaces in terms of their widgets and how the

widgets behave;Application modelsrepresent which parts

(functions and data) of applications are accessible from the

user interface; andDialogue modelsrepresent end-user in-

teractions, how they are ordered, and how they affect the

presentation and the application. The dialogue model acts

as the glue between the presentation and application mod-

els by expressing constraints on the sequencing of behavior

in these models. Model-specific compilers generate mod-

ules of code from each model, and these resulting modules

are composed (Figure 1). A distinguishing characteristic of

D
e
s
i
g
n

R
u
n

T
i
m
e

T
i
m
e UI

ToolkitRuntime Synchronization

ModelModelModel
DialogueApplication Presentation

PresentationDialogueApplication
Module ModuleModule

Figure 1: Model-based code generation

MASTERMIND is that the model-specific code generators

work independently of one another.

Composing the code generated from multiple models

is difficult. A model, by design, represents some aspects

of a system and is neutral with respect to others [3]. In-

evitably, however, functionality described in one model

overlaps with or is dependent upon functionality described

in another. A button, for example, is specified in the pre-

sentation model, but the behavior of the button influences

behavior in other models, such as when pressing the but-

ton causes other widgets to be enabled or disabled. Such

effects are described in the dialogue model. The effect

of pressing a button might also cause some application

method to be invoked. Such effects are described in the

application model. When code generated from multiple

models must cooperate, these redundancies and dependen-

cies can be difficult to resolve. Resolving them automati-

cally means that behavior in different models must be uni-

fied and the mechanism for this unification must be imple-

mented efficiently.

The model-composition problem is concerned with au-

tomatically deriving powerful, correct, and efficient user-

interfaces from separate presentation, dialogue, and ap-

plication models. We present a two-fold solution. First,

we formalize the three models as concurrent agents, which

synchronize on common events (x 3). Second, we make

the synthesis efficient by implementing a run-time dialogue

engine that actively synchronizes behavior in the code gen-

erated from presentation and application models (x 4). We

present the results of this approach on two examples and

give evidence to show that it scales up (x 5).

2 Background
We now present the issues that comprise the model-

composition problem and the influences on our solution.

Model-based approaches to user-interface generation use

models that are specified in diverse and often incom-

patible notations. This characteristic complicates model

composition because the composition mechanisms in one

model may not exist in another (x 2.1). Prior work in

user-interface architectures suggests using communicating

agents to structure user-interface code (x 2.2). Formal

models of communicating agents provide an called con-

junction, which is useful for composing partial specifica-

tions of a system (x 2.3). The contribution of this pa-

per is an extension of conjunction from a specification-

composition operator into a run-time–composition mech-

anism.

2.1 Model-based generation
The model-based approach to interactive system devel-

opment bases system analysis, design, and implementation

on a common repository of models. Unlike conventional

software engineering, in which designers construct arti-

facts whose meaning and relevance can diverge from that

of the delivered code, in the model-based approach, de-

signers build models of critical system attributes and then

analyze, refine, and synthesize these models into running

systems. Model-based UI generation works on the premise

that development and support environments may be built

around declarative models of a system. Developers using

this paradigm build interfaces by specifying models that

describe the desired interface, rather than writing a pro-

gram that exhibits the behavior [17].

One characteristic of model-based approaches is that,

by restricting the focus of a model to a single attribute

of the system, modeling notations can be specialized

and highly declarative. The MASTERMIND Presentation

Model [6], for example, combines concepts and terminol-

ogy from graphic design with mechanisms for composing

complex presentations through functional constraints. Dia-

logue models use state and event constructs to describe the

user-computer conversation. Example notations include

StateCharts [8] and Petri nets [13], which use a variety

of composition mechanisms that include state hierarchy,

concurrency, and communication. The MASTERMIND Ap-

plication Model combines concepts and terminology from

object-oriented design techniques [15] with mechanisms

for composing complex behavior based on method invo-

cation.

These examples illustrate that composition mechanisms

in one model may not exist in another model. It is not

clear that any of these intra-model mechanisms are suffi-

cient for inter-model composition, the subject of this pa-

per. The model-composition problem can be restated as

the need to unify behavior in multiple models without vio-

lating the rules of intra-model composition and while gen-

erating efficient code.

2.2 Multi-agent user-interface architectures

Our approach to model composition is based on prior

work in multi-agent user-interface architectures, which

provide design heuristics for structuring an interactive sys-

tem. These architectures describe interactive systems as

collections of independent communicatingagents, which

are independent computational units with identity and

behavior. Two general frameworks—the Model-View-

Controller (MVC) [9] and the Presentation-Abstraction-

Control (PAC) [7]—define specific agent roles and provide

guidance on how these agents should be connected.

The roles prescribed by the PAC framework most

closely resemble those of the MASTERMIND models. In

PAC, apresentationagent maintains the state of the dis-

play and accepts input from the user, anabstractionagent

maintains a representation of the underlying application

state, and acontroller agent ensures that presentation and

abstraction remain synchronized. The MASTERMIND Pre-

sentation, Application, and Dialogue models are descrip-

tions of the roles to be played by presentation, abstraction,

and controller agents.

Since MASTERMIND models describe PAC agents, we

chose to make MASTERMIND models compose in the same

manner that PAC agents compose. Specifically, the presen-

tation and application models define actions, which are or-

dered by temporal constraints in the dialogue model. To

make these ideas more formal, we built upon prior work in

formal definitions of agent composition.

2.3 Formal models of agents

The PAC framework provides heuristic definitions of

user-interface agent roles and connections. However, to

generate code from models, we need a more formal def-

inition of agents and agent composition. Process alge-

bras, such as LOTOS [4], are formal notations used to de-

scribe concurrent, communicating agents. Process alge-

bras are particularly useful for describing user-interface–

agent composition [1, 2].

A processis an entity whose internal structure can only

be discovered by observing the actions in which it partici-

pates. In this paper, we use the LOTOS[4] notation to spec-

ify processes. LOTOSis a process algebra that uses tempo-

ral operators to specify permissible orderings and depen-

dences over actions.

A L OTOS process performs actions and interacts with

other, concurrently executing, processes. Actions are built

up out of atomic units calledevents. The set of events in

which a processP may participate is called thealphabetof

P (denoted�(P)). If an evente is in the alphabet of two

processes, then these processes can participate in actions

that synchronize one. When processes synchronize on an

event, they simultaneously participate in actions over that

event. During synchronization, an action canoffer one or

more values that can beobservedby other actions partici-

pating in the same event.

Complex processes may be built by either combining

sub-processes through an ordering operator (e.g., process

P is the sequential composition of sub-processesP1 and

P2) or by conjoining sub-processes so that they run in-

dependently but synchronize on a set of named events.

In LOTOS, these synchronizing events must be specified

alongside the conjunction operator (k) in a process defini-

tion. For brevity, however, we use the conjunction operator

without naming the event set. In our abbreviated LOTOS

notation, the conjunction ofP1 andP2 is writtenP1 k P2.

Alexander uses conjunction to compose separately de-

fined application and presentation agents [2]. Abowd uses

agent-based separation to illuminate usability properties of

interactive systems [1]. Both of these approaches rely on

the use of conjunction to compose agents that are defined

separately but that influence each other. In fact, conjunc-

tion is a general operator for composing partial specifica-

tions of a system [19]. The idea is that each partial specifi-

cation imposes constraints upon variables (or, in the case of

agents, events) that are mentioned in other partial specifi-

cations. When these specifications are conjoined, the com-

mon variables must satisfy each constraint.

We define the behavior of a system generated from

MASTERMIND models to be any behavior that is consis-

tent with the conjunction of constraints imposed by the di-

alogue, presentation, and application models. Our results

extend conjunction from a specification tool into a mecha-

nism for composing run-time modules.

2.4 Summary
Three issues that must be addressed to solve the model-

composition problem: The solution must generate user-

interfaces with rich dynamic behavior; the correctness

of module composition must be demonstrated; and the

generated modules must cooperate efficiently. In MAS-

TERMIND, the rich expressive power is achieved through

special-purpose modeling notations [12, 5]. The remain-

der of this paper addresses the generation of correct imple-

mentations with maximal efficiency while preserving the

expressive power of MASTERMIND models.

3 Design requirements
Recall fromFigure 1 that each class of model has a

code generator that synthesizes run-time modules for mod-

els in that class. The modules are generated without de-

tailed knowledge of the other models. At run time, how-

ever, modules must cooperate as prescribed by the conjunc-

tion of the models that generated them. In this section, we

present a detailed specification of the relationship between

model composition and how the associated modules coop-

erate at run-time.

3.1 Notation
The subject of this paper is the automatic generation and

composition of run-time modules from design-time mod-

els. A module is a unit of code generated from a sin-

gle model. We use a third class of construct–the LOTOS

process–to define composition correctness. In formal cor-

rectness arguments, we often refer to all three types of con-

structs and distinguish them by using different fonts. MAS-

TERMIND models are written in theSans Serif font (e.g.,

Presentation, Dialogue, andApplication). LOTOS pro-

cesses are written in capital italic letters (e.g.,P, D, and

A, respectively). Run-time modules are written in German

letters (e.g.,P,D, andA, respectively).

We now briefly define some process algebra notation.

Suppose the behavior of an agent can be described by a

LOTOS processB. If the agent can perform an action

by synchronizing on evente (denotedB(e)), then its be-

havior from that point is be defined by another process

B0 = B(e). The systems under study in this paper are

deterministic, which means thatB(e) is always unique.

Moreover, when processes are constructed as the conjunc-

tion of sub-processes, the structure is preserved through

synchronization. That is, ifB b= B1 k : : : k Bn, then

B(e) b= B0
1 k : : : k B0

n where:

B0
i =

8<
:

Bi(e) if e2 �(Bi)

Bi otherwise

Any event that can be observed of a processP can be ob-

served of any conjunction ofP with other processes. This

observation will be important when we define the
 ob-

server function (x 3.4).

We will need to represent the architectural embedding

of Figure 1 equationally. In this case, we refer to the entire

run-time system,U, as a module composed fromP,D, and

A, using the notationU[P;D;A].

3.2 Inter-model composition

Model-based code generators construct a run-time mod-

ule from a design-time model. The code generation strat-

egy is model-specific, reflecting the specialization of mod-

els to a particular aspect of the system. At run time, how-

ever, modules must cooperate, and the cooperative behav-

ior must not violate any of the constraints imposed by the

models. There is an inherent distinction between behavior

that is limited to the confines of a given model and behav-

ior that affects or is affected by other models. Inter-model

composition is concerned with managing this latter inter-

model behavior.

Some behavior is highly model specific and neither

influences nor is affected by behavior specified in other

models. In the presentation model, for example, objects

are implemented using graphical primitives in the Amulet

toolkit [10], and attribute relations are implemented as

declarative formulas that, at run-time, eagerly propagate at-

tribute changes to dependent attributes. As long as changes

in these attributes do not trigger behavior in the dialogue

or application models, these aspects can be ignored when

considering model composition. In the application model,

object specifications are compiled into abstract classes un-

der the assumption that the designer will later extend these

into subclasses and provide implementations for the ab-

stract methods. As long as the details of these designer ex-

tensions do not trigger behavior in dialogue or presentation

models, this behavior may also be ignored when defining

model composition.

Within a module, entities compose according to a

model-specific policy. In the presentation model, for ex-

ample, objects compose by part-whole aggregation, and

attributes compose by formula evaluation over dependent

attributes. In the application model, objects compose us-

ing a combination of subclassing, aggregation, and poly-

morphism. When considering how models compose, some

details ofintra-modelcomposition can be abstracted away,

but not all of them. Models impose temporal sequencing

constraints on the occurrence of inter-model actions, and

models contribute to the values computed over the entire

system. These constraints and contributions must be cap-

tured in some form and used to reason about model com-

position.

We chose to map thisinter-modelbehavior into a se-

mantic domain that is common across all of the models.

This domain is described by the LOTOS notation, which

specifies temporal constraints on actions and data values.

We assume that LOTOSprocesses can be derived from the

text of a model specification (x 3.4). Designers may, for ex-

ample, need to designate actions of interest to other mod-

els. LOTOSprocesses do not capture all of the behavior of

models in composition, but they do express the essential

constraining behavior.

3.3 Example
We now demonstrate an example of inter-model behav-

ior expressed as a LOTOS process. The dialogue model

being considered is for a Print/Save widget similar to

those found in the user interfaces of drawing tools, web

browsers, and word processors. Such widgets allow the

user to print a document either to a printer or to a file on

disk; we call the former optionprinting and the latter op-

tion saving. Options specific to printing, such as print ori-

entation (e.g., portrait vs. landscape), and to saving, such

as the file to save in, are typically enabled and disabled

depending upon the user’s choice of task. These ordering

dependencies are reflected in the dialogue model for this

widget. The inter-model behavior of this dialogue model

can be described by the LOTOSprocess inFigure 2.

processPrintSave[print; save; go; cancel; layout; kbd (1)

lpr;write] (2)

(lpdhost; filename: string, (3)

doc : doctype, (4)

port : bool) : exit := (5)

P[go; lpr;write; layout; kbd] [> (cancel; exit) (6)

where (7)

processP[go; lpr;write; layout; kbd] : exit := (8)

Layout[go; lpr; layout] (9)

[> (save; F[go; lpr;write; layout; kbd]) (10)

endproc (11)

processF[go; lpr;write; layout; kbd] : exit := (12)

Edit[go;write; kbd] (13)

[> (print; P[go; lpr;write; layout; kbd]) (14)

endproc (15)

processLayout[go; lpr; layout] : exit := (16)

(layout? port; Layout[go; lpr; layout]) (17)

[] (go; lpr !lpdhost!port!doc; exit) (18)

endproc (19)

processEdit[go;write; kbd] : exit := (20)

(kbd? filename; Edit[go;write; kbd]) (21)

[] (go; write ! doc! file; exit)) (22)

endproc (23)

endproc (24)

Figure 2: Print/save dialogue process.

The processPrintSavecan synchronize on any of the

events that follow in square brackets. In this example, the

eventsprint, save, go, cancel, layout, andkbd(line 1 in the

figure) define points for synchronizing with the presenta-

tion; whereas the eventslpr andwrite (line 2) define points

for synchronizing with the underlying application. The pa-

rameterslpdhostandfilename(line 3) store the name of the

default printer and the user-selected filename respectively.

The parameterdoc (line 4) represents the document to be

printed or saved, and the parameterport (line 5) represents

the print orientation (portrait if true, landscape if false).

A separate presentation model defines buttons labeled

Send to Printer, Save to File, Print , andCancelwhich,

when pressed, offer the eventsprint, save, go, andcancel

respectively. The presentation model also contains a pair of

radio buttons that specify paper orientation. These buttons

display graphics of a page in either portrait or landscape

mode and, when selected, offer the eventport with a value

of true if the choice is for portrait orientation andfalsefor

landscape orientation. Finally, there is a text entry box in

which the user can type in a file name. As the user edits

this name, the text box responds by offering thekbdevent

parameterized by the contents of the string typed so far.

Note that the actual keys being pressed are not returned, as

editing functionality is best handled in a text widget and

is not what we would consider inter-model behavior. A

separate application model defines procedures for issuing a

print request and saving a file to disk. These procedures are

responsive to the eventslpr andwrite respectively. Actions

that synchronize on these events offer a number of values

including printer name (lpdhost) and filename (filename).

The temporal structure of dialogue, presentation, and

application model composition is given in the behavior

specification (line 6). The behavior ofPrintSaveis the be-

havior of the processP (defined on lines 8 through 11) with

the caveat that it may be disabled (terminated) at any time

by the observation of thecancelevent. ProcessP repre-

sents what interactions and application invocations must

happen in order to send a document to the printer. Most of

this functionality is actually expressed in the sub-process

Layout(defined on lines 16-19).P behaves likeLayoutin

the normal case, but it can be disabled if thesaveevent is

observed. Recall that thesaveevent is offered whenever

the user alternates from theSend to Printer button to the

Save to Filebutton in the presentation model. The pro-

cessF (defined on lines 12-15) likewise behaves like the

processEdit (defined on lines 20-23) in the normal case,

but is disabled if the eventprint is observed. Note thatF

andP are mutually disabling, which means that the user

can switch back and forth between printing and saving as

many times as he or she likes until hitting theGo button.

3.4 Models, modules, and processes
Processes like those inFigure 2 are useful for under-

standing the relationship between models and modules.

This relationship is complex, and so we describe it first

for a single model and then for the three models in com-

position. We now formalize correctness conditions for the

MASTERMIND dialogue model. A similar formalization

exists for the other MASTERMIND models.

Figure 3 shows the relationship between dialogue mod-

els (members of the setDialogue), run-time modules gen-

erated by dialogue models (members of the setD), and

the inter-model behavior of dialogue models (members of

the setProcess). The relationships between these sets are

defined as functions that map members of one set into an-

Dialogue
AD����! Process

CD

??y ??ytr

D

����! TraceSets

Figure 3: Dialogue compiler correctness.

other. The functionCD : Dialogue ! D maps dialogue

models to run-time implementation modules. Think ofCD

as an abstract description of the dialogue model compiler.

The functionAD : Dialogue ! Processmaps dialogue

models into LOTOSprocesses describing their inter-model

behavior. Think ofAD as an abstract interpretation of

the dialogue model. The function
 : D ! TraceSets

maps run-time implementation modules (of any kind) into

event traces of their observable behavior. Think of
 as

an observer of run-time behavior. Finally the function

tr : Process! TraceSetsmaps a LOTOS process to the

set of all possible action traces that can be observed of that

process.

These sets and functions are related by the commuta-

tive diagram ofFigure 3. Externally observable model

behavior is mapped into a LOTOS process byAD, and

the set of traces of a module’s externally observable ac-

tions is recorded by
. We say that a dialogue model

d 2 Dialogue is consistent with the moduleCD(d) if every

trace� 2
(CD(d)) is in the settr(AD(d)) and if there are

no sequences& 2 tr(AD(d)) such that& 62
(CD(d)). That

is, the inter-model behavioral interpretation ofd agrees ex-

actly with the observable behavior of the run-time module

generated fromd. Commutativity of the diagram requires

this property for any dialogue model expressible in the set

Dialogue.

3.5 Model-based synthesis
The correctness relationship between models and mod-

ules (Figure 3) can be extended to specify the correctness

of module composition. We now have functionsAP, AD,

andAA that map models into LOTOS processes. These

processes should compose by conjunction. We also have

a run-time module combinatorU that combines modules

from P, D, andA into a single module whose actions

are observable by the
 function. Figure 4 shows the

constraints on the behavior of these entities. Letp 2

8p 2 Presentation

8d 2 Dialogue

8a 2 Application

(U[CP(p); CD(d); CA(a)])

=

tr(AP(p) k AD(d) k AA(a))

Figure 4: Module-composition correctness.

Presentation, d 2 Dialogue, anda 2 Application. Then

the code generated from these models is correct if, for any

observable behavior�, � is a legal trace in the conjunction

of the models and vice-versa. This equation defines the

conditions necessary for correct module composition with-

out assuming any model-specific interpretation of these ac-

tions. It serves, therefore, as a specification of design re-

quirements. In the next section, we present an implemen-

tation that satisfies these requirements.

4 Design
We now turn to the design of the run-time synchroniza-

tion module and model-specific compilers ofFigure 1. The

correctness conditions ofFigure 4 impose constraints on

these designs. Fortunately, these constraints do not re-

quire model-specific knowledge (e.g., graphical concepts

in the presentation model or data layout in the application

model). This allows us to design a generic infra-structure

of inter-model cooperation and to assume this design when

crafting model-specific code generation strategies. The

design refines the notions of action and synchronization,

which form the basis of inter-module communication, into

run-time objects that implement these constraints.

4.1 Run-time control
One concern in designing a system is the implementa-

tion of software control [15]. Control can be implemented

in many ways. In procedural systems, for example, con-

trol is synonymous with location in the code; whereas in

concurrent systems, control is distributed and managed

by multiple objects concurrently. User-interface software

generally implements an event-driven, sequential control

scheme, in which a single thread provides a facade of con-

currency by dispatching small callback routines when in-

put device activity is sensed. In the interest of providing a

single style of control in our systems, we adopt the event-

driven, sequential implementation.

The choice of software control implementation influ-

ences the design of actions and synchronization. Actions in

the presentation module correspond to input device behav-

ior like mouse and keyboard events. Since these events in-

voke callback procedures, we implement synchronization

as a callback. This means that the temporal structure of

the inter-model behavior must be implemented in such a

way that all legal actions are enabled, all illegal actions are

disabled, and after action synchronization, new actions are

enabled or disabled. If one model can be made to represent

this temporal structure, then functionality provided by the

other models can be abstracted into context-independent

actions and implemented using method callbacks.

By design, the temporal structure of the dialogue model

represents the synchronization needs of the entire program.

This makes it natural to treat the dialogue module as the

arbiter of system control. In the architecture presented in

Figure 1, theDialoguemodule is a reactive component that

computes the enabled/disabled status of actions in response

to action synchronizations, and the other modules are col-

lections of code that are invoked when actions synchronize.

At run time, every action causes the dialogue module to

compute the next state of the system. Based on this next

state, actions embedded in other modules are enabled, dis-

abled, or activated as appropriate.

4.2 Action synchronization
The dialogue module computes the set of enabled ac-

tions as a function of the observed actions. Actions can

be thought of as entities that are enabled, disabled, and ac-

tivated by an omniscient dialogue agent, and the model-

specific interpretation of said actions can be structured to

occur when the action is activated.Action objects are

run-time entities that encapsulate the status (enabled or dis-

abled) of observable actions with activation procedures that

can be specialized by model-specific code generators to

implement desired functionality.Figure 5 shows our de-

sign as an OMT [15] object model.

The classAction in our design is abstract: It declares

an operationenable() that must be supplied by a sub-

class. OMT denotes subclassing by a triangle, one point

of which is connected to the superclass, with one or more

lines emanating out to its subclasses. In MASTERMIND-

Event

Data

ValueOffer

bool enable()
{ enabled = true;
 return true; }

bool enable()
{ enabled = true;

return false; }

Eager External

void observe();

Data Data

void set(Data) {abstract}

Input Output

Data& get() {abstract}

synchronizes Action

void disable()

void activate()

{ordered}

offers

bool enable() {abstract}

enabled : bool

Figure 5: Object model for synchronization mechanism.

generated code, presentation model actions are associated

with presentation module interaction objects, and applica-

tion model actions are associated with the invocation of

methods of objects in the application module. When a pre-

sentation model action can be offered, the graphical ob-

ject associated with that action is enabled and made ready

to accept user activity. When the graphical object detects

such activity, it signals the rest of the system than an ac-

tion synchronization is occurring. When an action in the

application model can be offered, a method in the applica-

tion module is invoked. The object model ofFigure 5 dis-

tinguishes between these interpretations of action enabling

by subclassingAction into those that areExternal and

those that areEager . The synchronization requirements

of an Eager action are met when the action is enabled;

whereasExternal actions require both being enabled

and observing activity generated by an external entity like a

mouse. Such activity is posted by issuing theobserve()

message.

ClassAction has asynchronizes association with

classEvent . Objects of classEvent represent process

events upon which multiple actions synchronize.Event

objects encapsulate a unique name with the synchroniza-

tion requirements of actions from multiple models. While

there is an object of classAction for every action in any

model, there is only one object of classEvent for any

distinct event.

LOTOS actions are often accompanied by one or more

value inputs or outputs. We designed classAction

to aggregate zero or more objects of the parameterized

class ValueOffer . OMT denotes aggregation with

the diamond operator. Zero or more objects of class

ValueOffer are parts of every object of classAction .

The parameterData in Figure 5 names a data type thatpa-

rameterizesclassValueOffer . A parameterized class

(denoted as a box with a dashed box in the upper right

corner) can define local attributes or operations whose sig-

natures vary with the parameter. SubclassesInput and

Output use this parameter value to specializeset and

get operations. These abstract operations must be sup-

plied by model-specific code generators, which know how

to supply and receive values in model-specific contexts.

LOTOSactions have the following syntax:

action ::= EventName(input j output)�

input ::= 0?0 Variable 0:0 Type;

output::= 0!0 Expr;

The only information a code generator has about an action

is the event name, whether the value offers are inputs or

outputs, the name and type of the variable in which to store

the input, and the expression used to compute the output.

This information sufficiently denotes an action object in

our framework.

4.3 Run-time execution
Event objects internalize synchronization require-

ments of multiple actions and issueactivate and

get /set() messages toAction andValueOffer ob-

jects as callbacks. To make this work,Event objects con-

tain a pointer to all of theAction objects that synchro-

nize and vice-versa. When anAction object is enabled

by the dialogue module, the return value (true or false) is

recorded in the correspondingEvent object so that the

synchronization requirements can be tabulated. A return

value of false indicates that an action isExternal , in

which case theEvent object records that the action is en-

abled but waits for external confirmation that the action has

been chosen by the user. Once all of the synchronization

requirements have been met, theEvent issues the appro-

priateactivate , get , andset operations and then in-

structs the dialogue module to compute the next state. This

process is described in greater detail in [16].

5 Results and status
We evaluated our solution to the model-composition

problem with respect to power, correctness, and efficiency.

Power We were able to express user interfaces in sev-

eral case studies using our modeling notations. We tested

the quality of user interfaces on two specific examples:

the Print/Save widget described inx 3.3 and an airspace

and runway executive that supports an air-traffic controller

(ATC) [16]. The former demonstrates the ability to gener-

ate common, highly reusable tasks for standard graphical

user interfaces. The latter demonstrates the ability to sup-

port a complex task using a direct-manipulation interface.

The ATC example testifies to the power of our ap-

proach. When flight numbers are keyed in to a text-entry

box, an airplane graphic, augmented with the flight num-

ber, appears in the airspace. As more planes come into the

airspace, the controller keys their flight number in a text-

entry box. When the controller decides to change the posi-

tion of a plane, he does so by dragging the airplane graphic

to a new location on the canvas. As soon as he presses and

holds the mouse button, a feedback object shaped like an

airplane appears and follows the mouse to the new loca-

tion. When the mouse is released, the plane icon moves to

the newly selected location.

The presentation model of the ATC example is quite

rich. It specifies gridding so that airplane graphics are

always uniformly placed within the lanes, and it speci-

fies feedback objects that give users information during

an operation. In a real deployment, the location of the

flights would probably change in response to asynchronous

application signals from special hardware monitors. In

such a deployment, these signals would be connected to

External actions and would fit into the framework with-

out change. For more details on this case study and the

print/save dialogue, see Stirewalt [16].

Correctness In addition to being able to generate and

manage powerful user interfaces, the composition of our

modules is correct. Two aspects of our approach require

justification on these grounds. First is the design of run-

time action synchronization. This paper addresses the the-

oretical issues involved here. In practice, we have found

the design to be quite robust. Second is the synthesis of

the runtime dialogue component (member of the setD)

from a dialogue model. As we mentioned earlier, the MAS-

TERMIND Dialogue model notation can be thought of as a

syntactic sugaring for a subset of Full LOTOS. We imple-

mented a prototype dialogue model code generator whose

correctness was validated in Stirewalt [16].

Efficiency We measured efficiency empirically by apply-

ing our prototype code generator on the ATC example.

We generated dialogue modules and connected these with

hand-coded presentation and application modules. On the

examples we tried, we observed no time delays between in-

teractions. We quantified these results by instrumenting the

source code to measure the use of computation resources

and wall-clock time. The maximum time taken during any

interaction was0:04 seconds. This compares well to the

de factoHCI benchmark of response time, which is0:1

seconds. We believe that more heavyweight, middle-ware

solutions, such as implementing synchronization through

object-request brokers, are not competitive with these re-

sults.

We are currently completing a new industrial-strength,

dialogue code generator. This new code generator is in-

corporating state-space reduction technology and will im-

prove interaction time that, in the prototype, is a function

of the depth of a dialogue expression with constant time

interaction. We are also working on adapting the presenta-

tion model code generator described in [6] to work within

our infra-structure.

6 Conclusions
Generating code for a specialized modeling notation is

easy. Integrating code generated from multiple models is

difficult. Integration is much more complicated than mere

linking of compiled object modules. For models to be

declarative, they must assume that entities named in one

model have behavior that is elaborated in another model.

Designers want to treat presentation, temporal context, and

effect separately because each aspect in isolation can be

expressed in a highly specialized language that would be

less clear if it were required to express the other aspects

as well. For interactive systems, composition by conjunc-

tion is essential to separating complex specifications into

manageable pieces.

Unfortunately, programming languages like C++ and

Java do not provide a conjunction operator. Such an op-

erator is difficult to implement correctly and efficiently,

and in fact, we did not try to implement it. Rather, by

casting model composition into a formal framework that

includes conjunction, we were able to express a correct so-

lution and then refine the correct solution into an efficient

design. This is a key difference between our approach and

middle-ware solutions that implement object composition

by general event registry and callback.

Our results contribute to the body of automated software

engineering research in two ways. First, our framework is

a practical solution that helps to automate the engineering

of interactive systems. Second, our use of formal meth-

ods to identify design constraints and the subsequent re-

finement of these constraints into an object-oriented design

may serve as a model for other researchers trying to deal

with model composition in the context of code generation.

The formality of the approach allowed us to minimize de-

sign constraints and was the key to arriving at a powerful,

correct, and efficient solution.

References
[1] G. D. Abowd. Formal Aspects of Human-Computer Inter-

action. PhD thesis, University of Oxford, 1991.

[2] H. Alexander. Structuring dialogues using CSP. In

M. Harrison and H. Thimbleby, editors,Formal Methods in

Human-Computer Interaction. Cambridge University Press,

1990.

[3] L. Bass and J. Coutaz.Developing Software for the User

Interface. SEI Series in Software Engineering. Addison-

Wesley, 1991.

[4] T. Bolognesi and E. Brinksma. Introduction to the ISO spec-

ification language LOTOS. Computer Network ISDN Sys-

tems, 14(1), 1987.

[5] T. P. Browne et al. Using declarative descriptions to model

user interfaces with MASTERMIND. In F. Patern`o and

P. Palanque, editors,Formal Methods in Human Computer

Interaction. Springer-Verlag, 1997.

[6] P. Castells, P. Szekely, and E. Salcher. Declarative models

of presentation. InIUI’97: International Conference on

Intelligent User Interfaces, pages 137–144, 1997.

[7] J. Coutaz. PAC, an object-oriented model for dialog de-

sign. In Human Computer Interaction - INTERACT’87,

pages 431–436, 1987.

[8] D. Harel. On visual formalisms.Communications of the

ACM, 31(5), 1988.

[9] G. E. Krasner and S. T. Pope. A cookbook for using the

model view controller user interface paradigm in smalltalk.

Journal of Object Oriented Programming, 1(3), 1988.

[10] B. A. Myers et al. The Amulet environment: New mod-

els for effective user-interface software development.IEEE

Transactions on Software Engineering, 23(6), 1997.

[11] B. A. Myers and M. B. Rosson. Survey on user interface

programming. InSIGCHI’92: Human Factors in Comput-

ing Systems, May 1992.

[12] R. Neches et al. Knowledgeable development environments

using shared design models. InIntelligent Interfaces Work-

shop, pages 63–70, 1993.

[13] P. Palanque, R. Bastide, and V. Seng`es. Validating interac-

tive system design through the verification of formal task

and system models. InWorking Conference on Engineering

for Human Computer Interaction, 1995.

[14] A. Puerta. The Mecano project: Comprehensive and inte-

grated support for model-based user interface development.

In Computer-Aided Design of User Interfaces, 1996.

[15] J. Rumbaugh et al.Object-Oriented Modeling and Design.

Prentice-Hall, 1991.

[16] R. E. K. Stirewalt.Automatic Generation of Interactive Sys-

tems from Declarative Models. PhD thesis, Georgia Institute

of Technology, 1997.

[17] P. Szekely et al. Declarative models for user-interface con-

struction tools: the MASTERMIND approach. In Bass and

Unger, editors,Engineering for Human-Computer Interac-

tion. Chapman & Hall, 1996.

[18] Pedro Szekely, Ping Luo, and Robert Neches. Beyond in-

terface builders: Model-based interface tools. InBridges

Between Worlds: Human Factors in Computing Systems:

INTERCHI’93, 1993.

[19] P. Zave and M. Jackson. Conjunction as composition.ACM

Transactions on Software Engineering and Methodology,

2(4):371–411, 1993.

